说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 傅里叶交换光谱仪
1)  Fourier transform spectrometer(FTS)
傅里叶交换光谱仪
2)  Fiber Fourier Transform Spectrometer(FFTS)
光纤傅里叶光换光谱仪
3)  FTIR
傅里叶变换红外光谱仪
1.
Environmental monitoring with Fourier Transform Infrared (FTIR) spectroscopy offers an effective method for the identification of hazardous gas pollutants.
作为一种有效的大气污染气体遥感探测识别手段,傅里叶变换红外光谱仪已经得到越来越广泛的应用。
4)  Fourier transform infrared spectrometer
傅里叶变换红外光谱仪
1.
A software of subtractive spectroscopy is provided on the NICOLET 20DXB Fourier transform infrared spectrometer.
本文利用NICOLET20DXB傅里叶变换红外光谱仪的差减光谱(差谱)软件对复杂混合物的光谱成功地进行了二次光谱图的差减,得到了很好的单一组分的红外光谱图,从而鉴定了塑料焊接剂主成分的结构。
5)  Fourier transform spectrometer
傅里叶变换光谱仪
1.
Measurement for the alignment errors in Fourier transform spectrometer;
傅里叶变换光谱仪准直性误差检测技术
2.
A speed measuring system of moving mirror for Fourier transform spectrometer(FTS) based on FPGA is introduced.
介绍了一种基于FPGA的傅里叶变换光谱仪动镜速度测量系统。
3.
Fourier transform spectrometer (FTS) modulated by means of rotary grating is developed in this paper.
提出了一种基于圆盘旋转光栅调制的傅里叶变换光谱仪 (FTS) ,光栅同时实现了分束和外差调制的功能。
6)  infrared FTS
红外傅里叶变换光谱仪
补充资料:傅里叶级数与傅里叶积分


傅里叶级数与傅里叶积分
Fourier series and integrals

傅里叶级数与傅里叶积分(F ourierse-ries and integrals) 傅里叶级数与傅里叶积分是研究周期现象的数学工具,它在波(例如光波和声波)的运动、振动力学系统(例如振动的弦)和天体轨道理论中是必不可少的。傅里叶级数及下面将要讨论的有关论题,在其他数学分支中有着重要的应用,其中特别值得提出的是概率论和偏微分方程。这个课题本身所促成的一些学科在纯数学的研究中也占有突出的位置。 单实变量函数f有周斯T,如果对每个t,有f(t+T)一f(t)。具有给定周期T的函数的最简单例子是简谐函数,即形如f(t)=aneosn叫+占。sin明的函数,其中。2二T一’是基频,a。,b。是常数。傅里叶级数的应用,其基本思想是:任意满足相当宽的条件且周期为T的函数f能够表为如下式所示的一些纯简谐函数的叠加: f(‘)一艺(a。eosn。:+。。sinn。‘),(1)或者利用复指数表为如f(‘)一艺c。e一(2)所示更为方便的形式。 假定式(2)逐项积分是合法的,则通过简单的计算表明,式‘一T一‘}f(t)。一‘”“dt(3)(积分区间可以是长为T的任意区间)成立。由此可诱导出傅里叶级数的正式定义。假设f是使得积分睽一f(‘’1“‘(4)存在且为有限的周期T的函数,由式(3)定义的系数{‘)是f的傅里叶系数,而式(2)中的级数是f的傅里叶级数。这些系数唯一地确定函数.即若对每一n有‘二一。,则f本质上是零函数。此外,还可以证明,许多对于函数的形式运算,施加到级数逐项进行仍是正确的。由此立即引出两个重要的问题。设s、(,)一名e,了一(5)是f的傅里叶级数的第N个部分和,第一个问题是当N趋于co时:斌t)是否收敛于f(t)?第二个问题是给定了一个序列(c。},它是否为某一函数的傅里叶系数序列? 一个连续函数的傅里叶级数不一定处处收敛。如果t0是一给定点,sN(t。)趋于f(t。)的收敛性依赖于f(t)在t。的邻域内关于t的性态。然而,如果我们取平均的部分和a、一(N+1)一,习s,,(6)则对于连续的f,将一致地有如“f。仅仅知道傅里叶级数的普通收敛性,在应用上并不重要。由于计算上的目的.必须知道一些有关收敛速度的知识。下面的论述这个问题的定理的例子:假设}df/dt}(M处处成立,则有},(,)一(‘),、六M(N+1)一。 黎曼一勒贝格引理断言,若{c。}是一个可积函数的傅里叶系数序列,则当n~士二~时伽~。。但逆命题不真,即并非系数趋于零的所有三角级数艺二‘““(7)都是傅里叶级数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条