说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 曲面薄板
1)  curve thin board
曲面薄板
2)  thin plate flexibility
薄板挠曲
3)  thin plate bending
薄板弯曲
1.
Element-free-method MLS derivatives based on orthogonal basic functions and its application to thin plate bending;
基于正交基函数的薄板弯曲无单元法MLS导函数及其应用
2.
Meshless solution for thin plate bending problems;
弹性薄板弯曲问题的无网格解法
3.
Based on thin plate bending theory of elasticity theory, a model of space layer was applied to solve the problem about ground surface movements due to underground rock excavation.
以弹性薄板弯曲理论为基础 ,对层状矿体开采引起的地表及岩体移动问题 ,引入层状模型进行描述 ,得到了水平及倾斜矿体开采的地表移动空间解析式、计算程序 ,并用于地表移动预计 ,现场实测结果与计算结果对比 ,效果较好。
4)  bending plate
弯曲薄板
1.
Damage detection of bending plate based on modal variable ratio of strain;
基于应变模态变化率的弯曲薄板结构损伤研究
2.
Using the characteristic of the regular curve boundary for a bending plate in engineering,the analytic integral formulae of assistant states in boundary element method(BEM) with the linear element for a Kirchhoff circular plate are introduced and the systematic equation of BEM is established in this paper.
利用一般弯曲薄板边界为规则曲线的特点,对工程常用的圆形弯曲薄板,采用线性单元,导出K irchhoff圆板各辅助态的边界积分解析表达式,建立问题的边界元法系统方程,从而使薄板的边界元分析完全避免通常使用的高斯积分,明显提高计算精度。
5)  plate bending
薄板弯曲
1.
Application of bending moment distribution and carryover limit formula to plate bending problems;
弯矩分配传递极限公式在薄板弯曲问题中的应用
2.
A parallelogram oblique element model is developed in the Finite Element Method of Lines (FEMOL) for the solutions of oblique plate bending problems.
计算实践表明,仅用很少数量的斜单元网格就可以得斜型薄板弯曲问题高精度的解答。
6)  bending plate
薄板弯曲
1.
Based on analysis of bending plate,the feasibility of the accelerating technique is discussed.
文中针对其计算时间长的缺陷 ,提出一种加速技术 ,并以小挠度薄板弯曲为例 ,对其有效性进行讨
补充资料:单侧曲面与双侧曲面


单侧曲面与双侧曲面
one - sided and two - sided surfaces

单侧曲面与双侧曲面(帐.幼山月.砚加。一浦山吐,叮肠。污;o月.oc”POHHNe.刀”yc功PollH“e no.epxltocT.) 以不同的方式放置于外围空间中的两类曲面(单侧放置(one一sid留泌ition)和双侧放置(t场U.si山刘p沈i石on)).例如,柱面是双侧曲面,而M施如带(M冬biuss州P)是单侧曲面.这两类曲面之间的特征区别是,柱面的边界由两条曲线组成,而M6bi留带的边界是单独的一条曲线.在封闭曲面中,球面(sPhere)和环面(torus)是双侧的,而X】曲1曲面(Kleins班鱼沈)是单侧的.作为双侧放置和单侧放置的例子,可以引用圆周在M6blus带中的嵌人.这样,圆周“(见图)是单侧曲线,而圆周刀是双侧曲线(一般说来,任何无定向道路(d留丽enii飞path)单侧地落在曲面中). 霍重)薰黔 更确切地说,单侧曲面和双侧曲面是以不同的方式嵌人在(维数高过1的)外围空间中的两类流形.双侧性和单侧性与可定向性和不可定向性(见定向(。山nta石on))有关,但是它们不是曲面的内在性质,而依赖于外围空间.例如,存在可定向的双侧曲面:梦C=夕,护C=R,;不可定向的双侧曲面:’R尸ZxOCR PZ xs,;可定向的单侧曲面:尹二S,xs,c= RPZx夕;不可定向的单侧曲面:R尸,CR尸(这里,梦是球面,产是环面,R尸“是射影平面,RP3是射影空间,夕是R尸上迷失方向的路径). 在可定向空间(例如,R”)中一个超曲面是可定向的,当且仅当它是双侧的. 假定一个法向量沿着浸人在某个空间中的光滑曲面上一条闭曲线移动,并保持它是曲面的法向量.如果不管如何选择闭曲线,当回到出发点时法向量的指向与它原来的指向总是一致的,则称该曲面是双侧的(t认。一sid记);反之,则称它为单侧的(o优一51山沮).更一般地,曲面n是双侧放置的当且仅当它的法丛(nonl以1 bundk)是平凡的(在这个丛里存在一个非零截面).反之,单侧曲面的法丛是非平凡的:在n上存在一条曲线使得法丛在它上面的限制是一条M6bius常. 空间N”中每一个(超)曲面M”一’在局部上都把尸分成两部分,即任意一点x任M月一’C=N“有一个邻域U cN,使得U由两个分支U’和U“组成,而U门M“一’属于它们的公共边界.在另一方面,M”一’在N”中的充分小邻域(如果M在N中是封闭的)或者是一个分支,或者有两个分支,其边界包含M在内.在第一种情形,(超)曲面M”一’也称为单侧的(one-51山沮),在第二种情形,称为双侧的(腼、51山过).因而,虽然曲面在局部上是双侧的,但是在大范围上它可能是单侧的.反过来,双侧曲面未必分隔它在空间中的邻域. 对于落在N“+’中的双侧曲面M”,任意一条封闭曲线:与M”在N”十’中的相交指数(同调论中的)(运如加叨。n in(七x(in holnofogy))满足方程(:,M”)二Olllod 2.但是,如果M”是单侧的,则对某条曲线:日丫+’(:,M·)笋0.这个事实(与法向量的移动及邻域的分隔一起)也能取作单侧性和双侧性的定义.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条