说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 等比缺项幂级数
1)  Equidifferent uncomplete power series
等比缺项幂级数
2)  gap power series
缺项幂级数
1.
In this paper we discuss the relation between the minimum modulus and the maximum terms of gap power series, and improve the result due toP.
在本文中我们研究缺项幂级数的最小模与最大项间的关系,改进了P。
3)  Fabry gap
缺项级数
1.
When the dominant coefficient As has Fabry gap,An estimate of the hyper-order of solutions for the above equation is obtained.
研究齐次线性微分方程f(k)+Ak-1f(k-1)+…+Asf(s)+…+A0f=0(1)的增长性问题,其中A0,A1,…,Ak-1是整函数,当存在某个系数As(s∈{0,1,…,k-1})为缺项级数且比其它系数有较快增长的意义下时,得到了微分方程(1)的一定条件下超越解的超级的精确估计。
2.
The relationship among the hyper order of growth of the solution of equation,the hyper order of growth of solution to small order of growth function and the order of growth of coefficient of equation are obtained,when the dominant coefficient A0 has Fabry gap.
当存在系数A0为缺项级数且比其他系数有较快增长性时,得到了上述非齐次微分方程解的超级、解取小函数点的超级与方程系数的级3者之间的关系。
3.
By using the Nevanlinna Value distribution theory,the paper investigates the growth of solutions of the differential equation f(k)+Ak-1fk1+…+Asf(s)+…+A0f=F,where A0,A1,…,Ak-1,F are entire functions and the dominant coeffcient As has fabry gap,it obtaines general estimates of the growth and zeros of entire solutions of higher order linear differential equations.
研究了非齐次线性微分方程f(k)+Ak-1fk-1+…+Asf(s)+…+A0f=F的增长性问题,其中A0,A1,…,Ak-1,F是整函数,当存在某个系数As(s∈{0,1,…,k-1})为缺项级数且比其它系数有较快增长的意义下时,得到了上述非齐次微分方程的一定条件下超越解的超级的精确估计。
4)  lacunary series
缺项级数
1.
We studied the values of the lacunary series with algebraic coefficients on the algebraic points,and got a theorem which generalized one of Mahler s.
我们研究了代数数系数的缺项级数的代数点上的值,推广了Mahler的一个定理。
5)  Hadarmard gap series
Hadarmard缺项级数
6)  Hadamard gap series
Hadamard缺项级数
补充资料:缺项
1.犹缺门。指工程建设﹐科学研究﹐艺术﹑体育表演等缺少的项目。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条