1) density function of energy level
能级密度函数
2) strain energy density function
应变能密度函数
1.
According to the strain energy density function for finite deformation of viscoelastic material, to the relaxation function of Maxwell mode and to the deformation gradient tensor of bubble, a stress equation for finite deformation of protein bubble is derived.
根据粘弹性材料有限变形的应变能密度函数、Maxwell模型的松弛函数及气泡的变形梯度张量,推导出蛋白质气泡有限变形的应力方程。
3) strain energy function
应变能密度函数
1.
A strain energy function, being split into isochoric and volumetric parts, was proposed for porous silicone rubber with relatively high porosity at finite deformation under compression.
针对孔隙度较大 (孔隙度大于 5 0 % )的硅橡胶材料在压缩情况下的大变形 ,提出了可描述此类可压橡胶材料力学行为的应变能密度函数 ,推导了硅橡胶材料的本构方程。
2.
Using vascular strain energy function advanced by Fung,the vascular stress_strain relationship under equilibrium state was analyzed and the circumferential and axial elastic moduli were deduced that are expressed while the arterial strains around the equilibrium state are relatively small, so that the equations of vessel wall motion under the pulsatile.
动脉中的血液流动被分解为平衡状态(相当于平均压定常流状态)和叠加在平衡状态上的周期脉动流,利用Fung的血管应变能密度函数分析血管壁在平衡状态下的应力_应变关系,确定相对于平衡状态血管作微小变形所对应的周向弹性模量和轴向弹性模量,并建立在脉动压力作用下相应的管壁运动方程,与线性化Navier_Stokes方程联立,求得血液流动速度和血管壁位移的分析表达式,详细讨论血管壁周向和轴向弹性性质差异对脉博波、血液脉动流特性以及血管壁运动的影响·
3.
This paper,on the bases of the predecessor work,with the help of the strain energy function,the three-dimension expression on the artery constitutive equation is derived (seven coefficients),In addition,.
本文是在先辈工作的基础上,借助于应变能密度函数,给出血管壁本构方程的三维表达形式(七参数),并借助于先进的实验设备及方法,拟和出本构方程的七个物质参数。
4) energy density function
能量密度函数
1.
The energy density function of extension explosive charge is derived by mathematical method and based on it,the end effect,middle effect and length diameter ratio effect of extension explosive charge and the blasting property are studied in this paper.
本文以数学方法导出了延长药包的能量密度函数,并据此剖析了延长药包的端部效应、中部效应、长径比效应及其它爆破特
5) density of state function
能态密度函数
6) energy spectrum density function
能谱密度函数
补充资料:能级密度
分子式:
CAS号:
性质:原子核的高激发能级不是分立的,而是彼此重叠连成一片。单位能量间隔内的能级数目,称为能级密度。
CAS号:
性质:原子核的高激发能级不是分立的,而是彼此重叠连成一片。单位能量间隔内的能级数目,称为能级密度。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条