1) minimizing maximum modulus
极大模理想点
2) maximal ideal
极大理想
1.
Submaximal ideal and subminimal ideal of semiring;
半环的次极大理想与次极小理想
2.
We also obtain the representation forms of Riesz homomorphisms and maximal ideals on E whenever E=C(X) and E i=C(X i) for realcompact space X and X i.
当 E=C(X)和 Ei=C(Xi) (X和 Xi 为实紧空间 )时 ,还得到 E上 Riesz同态和极大理想的表示形
3) ideal magnetic pole
理想点磁极
1.
According to the hypothesis of Amber s molecular electric current, the physical model of ideal magnetic pole is made by a thin solenoidal circuit, and the relation between the magnetic charge on the pole and the magnetic moment per unit length of the thin solenoidal circuit is got.
根据安培分子电流学说,用密绕通电的细螺线管建立了理想点磁极的物理模型,获得了点磁极磁荷量与螺线管单位长磁矩的关系。
4) Maximal left ideal
极大左理想
1.
In chapter 2, we give some properties of subidempotents, left regular ordered semigroups and maximal left ideals.
第二章给出有关序半群的子幂等元和左正则序半群以及极大左理想等的若干性质;利用极大左理想刻画无子幂等元,且任意真左理想是Archimedean(1-Archimedean)子半群的序半群。
5) submaximum ideal
次极大理想
1.
Subset′s submaximum ideal of the BCK-algebra;
BCK-代数中子集的次极大理想
2.
If it is proper ideal of ring R,Φ≠AX-I,submaximum ideal of subset A is introduced into the ring,its fundamental properties are discussed,and some corresponding results of submaximum ideal are improved.
若I是环R的真理想,Φ≠A R-I,引入关于A的次极大理想,讨论了它的基本性质,改进了有关次极大理想的相关结果。
6) Maximal Middle Ideal
极大中理想
补充资料:模理想
模理想
modular ideal
模理想汇n扣山山ri山汾l;MO用阴”p”从益“服幼J 环R的有下述性质的右(左)理想(泪暇d)J:R至少有一个元素e,使对R中所有的x,差x一ex属于J(对应地,尤一戈ecJ).元素e称为模理想J的左(右)恒等元(1eft州ght) identity). 在有恒等元的环中,每个理想都是模的.每个真模右(左)理想可嵌人极大右(左)理想中,后者自然是模的.结合环的全部极大模右理想的交与全部极大左模理想交重合,就是环的Ja即胜翔l根(Jac。玩onn戈dical).模理想也称为正则理想(reg川arid已互七).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条