说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 辐射流体动力学
1)  radiation hydrodynamics
辐射流体动力学
1.
A set of numerical radiation hydrodynamics computation of the structure of strong waves in neon is described.
通过一维辐射流体动力学数值模拟 ,仔细研究了工作介质的初始密度对在氖中传播的强冲击波的波阵面辐射特性、波阵面亮度温度谱分布的作用。
2)  Radiation-Convection-Hydrodynamics
辐射-对流-流体动力学
3)  radiation magnetohydrodynamics
辐射磁流体动力学
1.
Process of radiation magnetohydrodynamics in Al wirearray Z-pinch;
铝丝阵列Z箍缩的辐射磁流体动力学过程
4)  radiation hydrodynamics
辐射流体力学
1.
The conversion of intense laser light into thermal X-ray radiation in laser-induced plasmas is investigated using a one-dimensional radiation hydrodynamics code MULTI.
利用一维辐射流体力学程序MULTI数值模拟研究了功率为 10 1 4 W cm2 、脉冲宽度为 30 0ps、波长为 0 。
2.
The thickness of target for X-ray sources with approximate Planck s spectral distribution from laser-produced plasmas is optimized using a one-dimensional radiation hydrodynamics code MULTI.
利用辐射流体力学程序对三倍频纳秒激光与靶物质相互作用进行了模拟研究,得到了可以产生黑体辐射谱分布的激光等离子体X射线辐射靶的最佳厚度;数值模拟研究了黑体谱分布的X射线辐射场对等离子体系统平均离化度分布的影响,它有助于深入理解天体物理中吸积盘对它周围星际物质的离化影响。
3.
In this paper,radiation hydrodynamics model is used to study the interaction between short pulse intense laser and plane Au target,which includes laser s propagation and absorption in plasma,X-ray emission,plasma development and its thermodynamic state.
本文用非平衡的辐射流体力学模型系统地研究了短脉冲强激光与平面金靶相互作用的物理过程,包括激光在等离子体中的传播和吸收,X-射线的发射,等离子体的流体力学发展和热力学状态等。
5)  RMHD
辐射磁流体力学
6)  hydrodynamic radiation
流体动力辐射
补充资料:传热学:流体动力学基本方程

流体动力学基本方程:
将质量﹑动量和能量守恆定律用於流体运动所得到的联繫流体速度﹑压力﹑密度和温度等物理量的关係式。对於系统和控制体都可以建立流体动力学基本方程。系统是确定不变的物质的组合﹔而控制体是相对於某一坐标系固定不变的空间体积﹐它的边界面称为控制面。流体动力学中讨论的基本方程多数是对控制体建立的。基本方程有积分形式和微分形式两种。前者通过对控制体和控制面的积分而得到流体诸物理量之间的积分关係式﹔后者通过对微元控制体或系统直接建立方程而得到任意空间点上流体诸物理量之间的微分关係式。求解积分形式基本方程可以得到总体性能关係﹐如流体与物体之间作用的合力和总的能量交换等﹔求解微分形式基本方程或求解对微元控制体建立的积分形式基本方程﹐可以得到流场细节﹐即各空间点上流体的物理量。
         积分形式基本方程 主要有连续方程﹑动量方程﹑动量矩方程和能量方程。
         连续方程 单位时间流入控制体的质量等於控制体内质量的增加。它是由质量守恆定律得到的﹐其数学表达式为
        
        式中为速度﹔为密度﹔为控制体体积﹔A 为控制面面积﹔为dA 控制面处法线方向单位向量(图1 积分形式基本方程示意图 )。定常流动时上等式右边为零。这时如截取一段流管(见流体运动学)作为控制面(图2 流管内的连续方程 )﹐则有下述连续方程﹕
        P1V1A 1=P2V2A 2
        式中P1 ﹑V1﹑P2﹑V2分别为A 1和A 2截面上的流体平均密度和速度。
         动量方程 单位时间内﹐流入控制体的动量与作用於控制面和控制体上的外力之和﹐等於控制体内动量的增加。它是由动量守恆定律得到的﹐其数学表达式为﹕
        
        式中为外部作用於 dA 控制面上单位面积上的力﹔为外部作用於d控制体内单位质量流体上的力﹔通常就是重力。定常流动时﹐上等式右边为零。动量方程用於确定流体与其边界之间的作用力。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条