1) numerical solution of NS equation
NS方程数值求解
2) numerical calculation of NS equation
NS方程数值解
3) numerical simulation by NS equations
NS方程数值模拟
4) numerical solution of N-S equation
N-S方程数值求解
5) the numerical solution of time-dependent Schrodinger equation
含时薛定锷方程的数值求解
6) numerical solution
数值求解
1.
Head advancement of turbulent gravity current: numerical solution;
开闸式异重流前峰行进规律:数值求解
2.
This paper deals with numerical solution of the mathematical model of clothing heat and humidity transfer.
对人体着装传热传质过程的数学模型进行了三维离散,并利用完全隐式差分格式和MATLAB软件进行了数值求解,得到了较为满意的结果。
3.
A differential numerical solution is performed on equations, by which theoretical bases are provided for field app.
依据国内外文献报道及室内研究结果,建立了泡沫复合驱改进数学模型,其中包括泡沫在多孔介质中流变特征、形成与破裂以及泡沫对气相渗透率和粘度的影响和驱替体系其他的化学组分运移与扩散,并对方程进行了差分数值求解,为泡沫复合驱进入矿场应用提供了一定的理论依据。
补充资料:Cauchy问题,常微分方程的数值方法
Cauchy问题,常微分方程的数值方法
audiyproHem, numerical methods for ordinary differential equations
Ca‘hy问皿,常橄分方程的数值方法【Ca“由y脚曲幻11,numeri因me山川s址。浦n.令山价跨n柱al equ劝舰s;Ko山“3a几a,a,叼“c月eltH石此MeTo口‘1 pe山e““,皿几,浦姗u此eu“oro职中钾Peuu.a几研oroyP韶ne..,1 Q以为y问题是求满足一个微分方程(或微分方程组)的一个函数(或几个函数),并在某固定点上取给定值的问题.设y(x)={yl(x),…,yn(x)}, f(x,y)=仃l(x,y),…,儿(x,少)}为分别在闭区间I=笼x:}x一al簇A}上和闭区域n二{(x,y):lx一al簇A,}{y一bl!簇B}内有定义并连续的向量函数,其中日.}}是有限维空间R”的范数.使用这个记号,我们可将一阶常微分方程的Q议为y问题写成: 少’(x)=f(x,少),少(x。)=少。,x。。I,少。Ell.(I) 适当选择新未知函数可将任一常微分方程组(任意阶的)的Q议hy问题简化成这种形式. 如果函数f(x,y)在n中连续,问题(l)有解.对解的唯一性的充分条件是05即od条件(05即od condi石on): 1 1 f(x,川一f(x,少2)}】(。(}}少:习:}}),(2)其中。(t)函数满足 c(工、00.。*0.。>0. 毛.气l)或者是更强的Li声chitZ条件(Li声Chilz condltion): I}f(x,少、)一f(x,yZ){}簇L! .y,一y:}!(3)成立,数L称为Li详Chi仪亨攀(Li声chitZconstant)·如果f(x,力对y连续可微,那么Li详d腼tZ常数的一个可 能值为 “一絮11常11·(4)在Li详chitZ常数(4)太大的各种情况下,用数值方法成功地解Q雀hy问题要求专门的数值技术,尽管从理论上讲这个问题是唯一可解的.特别是矩阵(方/日x)的本征值“很分散”时,即最大的本征值是最小的儿百倍甚至几千倍,就出现这种情况.这样的微分方程组称为刚俘枣邻s叮s”‘),对应的问题称为刚件。“力y卿覃(s叮CauChy probl~)·刚性系统的一个“源”是偏微分方程(例如通过直线方法)到常微分方程组的转换. 常微分方程的数值方法通常包括一个或数个公式,它们确定在离散点列凡(k=0,1,…)上要找的函数y(x)的关系.这些点的集合称为网格.一般的数值方法以及特别用于微分方程的数值方法,其基础是由L.Euler建立的.解0以为y问题的最简单的方法之一就是以他的名字命名的.这个方法如下.将问题(1)的解展成关于点xk的几尹or级数: (x一x。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条