1) holographic optical head
全息光学头
1.
An analysis is made of the diffraction efficiency and phase digitized noise of HOE, being a key element in holographic optical heads.
分析了全息光学头中的关键元件HOE的衍射效率与位相量化噪声,通过槽纹轮廓结构参数优化与改善工艺提高衍射效率,实现HOE元件的实用化。
2.
The design of HOE in holographic optical head is the key technique of the miniaturization of new optical head.
分析了全息光学头的系统结构及伺服机理,对关键元件HOE槽纹的轮廓进行优化设计,在保持光学头性能不变的情况下,得到较高的光能衍射效
3.
The multi beam holographic optical head which combines the multi beam optical head with holographic optical head is proposed.
提出了多光束全息光学头的全新思想 ,它综合了多光束光学头并行存储和全息光学头灵巧紧凑的优点 ,在提高数据传输速率的同时还可以缩短随机存储时间。
3) optical hologram
光学全息图
4) Optical holography
光学全息术
1.
Optical holography is an experimental technique which can record and reconstruct the whole information of object wave front, and has been applied to fluid field investigation.
光学全息术可实现物光波阵面的真实存储和再现,现已广泛应用于流场分析、燃烧分析等领域。
5) holographic optical elements
全息光学元件
1.
The critical part of this sight is a holographic optical elements combined with a lensless Fourier transform hologram and a holographic beam transformer.
瞄准具的核心部件是由一块无透镜傅里叶变换位相全息图和一块全息光束变换器组成的全息光学元件。
2.
Holographic optical elements(HOE) can transform optical wave field.
全息光学元件能够完成光波场的转换。
6) holographic optical element (HOE)
全息光学元件
1.
A method of fabricating holographic optical element (HOE) for free-space optical clock distribution is presented.
提出了用二维全息光栅制作自由空间光学时钟分布中的全息光学元件的方法。
补充资料:全息光学元件
根据全息术原理制成的光学元件,主要指:全息透镜、全息光栅、全息滤光片、全息扫描器等。它的主要特点是:①全息光学元件是一种薄膜系统,所以具有重量轻的优点;②由于多个全息图可以记录在同一张底片上,所以可以得到空间重叠的全息光学元件;③它的成像特性随波长而变,所以有很大的色差;④由于它是衍射光学元件,所以不能同时得到大视场和大出射光瞳;⑤不能单独提供一个系统的功用,比如望远镜全息图不能提供角放大率。
由以上的特点可以看出全息光学元件的优点和缺点,同时可以知道它不能完全代替一般的光学无件,只能与其同时用于光学系统中。通常全息光学元件用于单色光或窄光谱带的情况下较为优越。
全息透镜 一般是用两球面波或一平面波与一球面波相干叠加而制得全息图。全息透镜也有同轴与离轴两种类型,能起到透镜的作用,实际上是菲涅耳波带片或变形了的菲涅耳波带片(见菲涅耳衍射)。有像差,产生的原因是记录媒质处理前后的形变、再现时的波长的改变及复位精度等。全息透镜也可以用计算机法制作。
全息光栅 是由两平面波相干叠加而得到的全息图。目前不仅制出了平面光栅而且还制出了凹光栅和集光光栅。由于全息光栅也可以用两球面波来制得,这样得到的光栅还具有自聚集能力,用它来制造单色仪可以省去准直镜和会聚镜。
全息滤光片 两平面波夹角接近180°且都垂于记录表面这样得到的全息图就是全息滤光片。其条纹间隔为 λ/2。使用时当入射光是复色光时,只有满足布喇格衍射角条件的某波长的光才能衍射再现出来,从而起到滤光片的作用。其波长半宽度较干涉滤光片窄得多。
全息扫描器 是由照相法得到但大多数情况都是由计算机产生的全息图。通常是把一记录媒质分割成若干等分,每一小部分都是按所需要的两束相干光叠加而得到的全息图。再现时用一束已知的光照射全息图,同时按一定规律移动这个全息图,就会在预定的位置得到再现光,而且随着全息图的移动,再现光的方向不断改变着,所以也把它叫作全息光偏折器。
由以上的特点可以看出全息光学元件的优点和缺点,同时可以知道它不能完全代替一般的光学无件,只能与其同时用于光学系统中。通常全息光学元件用于单色光或窄光谱带的情况下较为优越。
全息透镜 一般是用两球面波或一平面波与一球面波相干叠加而制得全息图。全息透镜也有同轴与离轴两种类型,能起到透镜的作用,实际上是菲涅耳波带片或变形了的菲涅耳波带片(见菲涅耳衍射)。有像差,产生的原因是记录媒质处理前后的形变、再现时的波长的改变及复位精度等。全息透镜也可以用计算机法制作。
全息光栅 是由两平面波相干叠加而得到的全息图。目前不仅制出了平面光栅而且还制出了凹光栅和集光光栅。由于全息光栅也可以用两球面波来制得,这样得到的光栅还具有自聚集能力,用它来制造单色仪可以省去准直镜和会聚镜。
全息滤光片 两平面波夹角接近180°且都垂于记录表面这样得到的全息图就是全息滤光片。其条纹间隔为 λ/2。使用时当入射光是复色光时,只有满足布喇格衍射角条件的某波长的光才能衍射再现出来,从而起到滤光片的作用。其波长半宽度较干涉滤光片窄得多。
全息扫描器 是由照相法得到但大多数情况都是由计算机产生的全息图。通常是把一记录媒质分割成若干等分,每一小部分都是按所需要的两束相干光叠加而得到的全息图。再现时用一束已知的光照射全息图,同时按一定规律移动这个全息图,就会在预定的位置得到再现光,而且随着全息图的移动,再现光的方向不断改变着,所以也把它叫作全息光偏折器。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条