1) multiple holes
多圆孔
1.
By using of complex variable function and integral equation method, the antiplane multiple holes and cracks problem of half plane region is considered in this paper.
运用复变函数及积分方程方法,求解了半平面域多圆孔多裂纹反平面问题。
2.
By the use of the method of complex variables and the method of integral equation, the crack problem for the antiplane multiple holes on a circular region of a solid is studied and is presented in this paper.
本文运用复变函数及积分方程方法,求解了圆形域多圆孔多裂纹反平面问题,建立了两种类型的基本解。
2) multiple elliptical holes
多椭圆孔
1.
By using of complex variable and integral equation methods, the antiplane multiple elliptical holes and multiple cracks problem of infinite region was considered.
运用复变函数及积分方程方法 ,求解了无限域中的多椭圆孔多裂纹反平面问题 。
4) interface multi-circle
界面多圆孔
5) thin plates with multiple circular cutouts
多圆孔薄板
6) multi-radius ellipse hole
多半径椭圆孔
1.
The application of multi-radius ellipse hole in No.
介绍了多半径椭圆孔在石钢一轧厂的应用情况,大规格圆钢成品前由单半径椭圆孔改为多半径椭圆孔后,解决了成品扭转和水平尺寸较小的问题。
补充资料:圆孔圆钱
中国战国时通行于三晋和周的一种中有圆孔的圆形铜币。此钱一般无内外郭,背为平背。钱上有"共"、"垣"、"蔺"、"离石"、"襄阴"、"漆垣"、"安臧"、"东周"、"西周"、"共屯赤金"、"半睘"等文字,大多为地名或国名,如共、垣属魏,蔺、离石属赵,安臧属周,东周、西周为国名。这类圆钱大小不一,大致可分为大小两类。大钱直径 3.5~4厘米,重约 10~18克;小钱直径 2.5厘米左右。大钱中的"漆垣"则标明"一",可见小钱当为半。"半睘"属小钱,钱文"半睘"即指半小圆钱而言。安臧钱的书体和安臧空首布上的"安臧" 2字相似,表明两种钱铸造年代相近,似应在战国早期或中期。三晋圆钱品种较多,其中有些当和周钱同时,有的可能较晚。传世品中还有一种文曰"重一两十二珠"(或释"珠重一两,十二")的圆孔钱,前人或以为是秦钱,因为此钱的资料太少,情况很难弄清楚。
战国时三晋的各种圆钱,铸造较少,故流传至今的实物不多,较常见的仅共、垣两种,山西省闻喜、侯马和河南省的辉县、洛阳等地曾有出土。周钱中唯安臧钱近年有出土品。
战国时三晋的各种圆钱,铸造较少,故流传至今的实物不多,较常见的仅共、垣两种,山西省闻喜、侯马和河南省的辉县、洛阳等地曾有出土。周钱中唯安臧钱近年有出土品。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条