说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 概率分布方法
1)  probability distribution method
概率分布方法
2)  Distribution-based technique
概率分布法
3)  variance of probability distribution
概率分布的方差
4)  probabilistic analysis method
概率分析方法
1.
Interval analysis method overcomes the shortcoming that probabilistic analysis method needs a large number of prio.
区间分析方法克服了概率分析方法需要预先知道大量统计数据的缺点,且计算量小。
2.
Traditionally,the effective method to solve uncertain problems is the probabilistic analysis method.
传统上用来处理不确定性问题比较有效的方法是概率分析方法,本文应用区间分析方法对具有不确定参数的应力强度因子进行估计。
5)  probability analysis method
概率分析方法
1.
This paper analyses the safety of pressure vessels affected with cracks by the use of a probability analysis method.
进一步考虑材料性能分散性和使用环境随机性的影响,用概率分析方法对含有裂纹的压力容器进行安全性分析,阐述了其可靠度指标和失效概率的分析计算步骤,并用Monte-Carlo方法预测裂纹扩展寿命,从而为正确确定压力容器的运行方式及合理的修理间隔期提供了重要的技术依据。
2.
The probability analysis method is more advanced the traditional way in this aspect with the traditional limit equilibrium theory methods.
传统的数学-力学模型是通过确定的参数来进行滑坡体的稳定性评价,由于人们对地质体属性的了解是随机的、不全面的,因此对于模型问题采用精确的数值来表达是不合理的,概率分析方法则克服了这一缺憾。
6)  random pushover analysis method(RPAM)
概率Pushover分析方法
1.
In this paper,based on the Chinese code for aseismic design of building structures (GBJ 11-89) and the results of statistics about Chinese seismic actions,the random pushover analysis method(RPAM) is hereby put forward.
本文结合我国现行的抗震规范 (GBJ 11— 89)和地震作用统计参数 ,提出了结构抗震分析的概率Pushover分析方法。
补充资料:分布(概率)


分布(概率)
Distribution (probability)

分布(概率)[distributioin(probabi-lity)〕 一系列独立试验的结果、一些随机变量或误差,经常出现在一些相当正规并可预测的模型中。这些模型可以用数学方法表达出来,其中最重要的称为二项分布、正态分布和泊松分布。 二项分布考虑n次独立试验,每一次试验的结果或者是成功S,或者是失败F,其相应的概率分别为P和q一1一P。以S。表示成功的次数。因为共有(艾)种可能的方法来选择;处成功和,一;处失败,所以随机变量S。的概率分布由p‘S。一‘卜{艾)户,、一给出.这里k二。,1,一,n。这就是二项分布,它的数学期望为np.方差为n闪。参阅“概率论”(probability)条。 如果按照第k次试验是成功还是失败来令随机变量X。等于1或。,那么S。二XI+…十X。。因此.根据中心极限定理,此二项分布可以用正态分布来通近。这个特别的情形称为棣美弗一拉普拉斯定理,设 二,一(*一,户)(,:户。)一告定理断言,当n~Qo时,在一个趋于o的百分误差之内,我们有 P{S,二k}一(2万)一“Zexp(一二是/2), P{a0,25%的场合有S。>o。67n,/2,大约在16%的场合中5。>Znl/,,等等。中心极限定理并不是说,在一次这样的游戏中,和数S,,52,…中大约有一半是正的。事实上,反正弦定律表明,其相反的情形是真的:即所有S,>0比正负各半的情况更可能。 多元正态分布上面的理论可以不作本质的改变推广到。维的情形。。维正态密度定义为(2二)一袱Dl/se一Q(了1一,,/2,这里Q是一个以D为行列式的正定二次型,其协方差矩阵是Q的矩阵的逆。如果随机变量X;,…,X。的n维联合分布是正态的,那么每一个X,也是正态的。但其逆不真,这一点在教科书中都可以找到。多元正态分布对平稳随机过程是很重要的。参阅“随机过程”(stoehastie process)条。 泊松分布参数为入的泊松分布是一个以概率_,几去_.,__、…_、,.尸。一尸前取值走‘走一。,‘,“,’‘”的概率分布·其数学期望与方差都等于又。这是最重要的分布之一,它在随机过程的理论和许多应用中起着基本的作用。对它的性状的充分理解可以从它原始的出处和考虑它的许多推广中得到。然而,有很多可以由下面的从二项分布出发的初等阐述中得到。 考虑n次独立试验,n是一个大数,每一次试验的结果,或者是成功,或者是失败,概率分别为P与q一1一P。通常只感兴趣于P很小、但成功的平均数nP一凡却具有中等程度大小的情形。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条