|
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
|
|
1) dual-integral
对偶积分
2) dual integral equations
对偶积分方程
1.
By using the Fourier transform,the problem can be solved with a pair of dual integral equations in which the unknown variable is the jump of displacements across the crack surfaces.
首先利用付里叶变换,使问题的求解转换成对一对变量为裂纹面上位移差的对偶积分方程的求解。
2.
With Fourier transform,the problem is evolved as dual integral equations where the unknown variable is taken as the jump of the displacements across the cract surface.
利用傅立叶变换,使问题的求解转换为对一对以裂纹表面上的位移差为未知变量的对偶积分方程的求解。
3.
By using the Fourier transform,theproblem can be solved with the help of a pair of dual integral equations in which the unknown variable is thejump of the displacements across the crack surfaces.
利用 Fourier 变换,问题可以转化为对未知数是裂纹表面张开位移的一对对偶积分方程的求解,此对偶积分方程采用 Schmidt 方法求解。
3) dual integral equation
对偶积分方程
1.
By using the Fourier transform, the problem can be solved with a pair of dual integral equations in which the unknown variable was the jump of the displacements across the crack surfaces.
利用Schmidt方法分析了压电压磁复合材料中可导通界面裂纹对反平面简谐波的散射问题· 经过富里叶变换得到了以裂纹面上的间断位移为未知变量的对偶积分方程· 在求解对偶积分方程的过程中,裂纹面上的间断位移被展开成雅可比多项式的形式· 数值模拟分析了裂纹长度、波速和入射波频率对应力强度因子、电位移强度因子、磁通量强度因子的影响· 从结果中可以看出,压电压磁复合材料中可导通界面裂纹的反平面问题的应力奇异性形式与一般弹性材料中的反平面问题应力奇异性形式相同·
2.
By use of the Fourier transform,the problem can be solved with the help of two pairs of dual integral equations,of which the unknown variables are the jumps of the displacements across the crack surfaces.
利用Schmidt方法分析了位于正交各向异性材料中的张开型界面裂纹问题· 经富立叶变换使问题的求解转换为求解两对对偶积分方程,其中对偶积分方程的变量为裂纹面张开位移· 最终获得了应力强度因子的数值解· 与以前有关界面裂纹问题的解相比,没遇到数学上难以处理的应力振荡奇异性,裂纹尖端应力场的奇异性与均匀材料中裂纹尖端应力场的奇异性相同· 同时当上下半平面材料相同时,可以得到其精确解·
3.
The solution of this problem can be transformed into dual integral equation, then a set of dual integral equation is solved by using the Schmidt' s method instead of using the second Fredholm integral equation method.
用非局部线弹性理论研究了无限大功能梯度材料反平面的裂纹问题,通过Fourier积分变换使该问题的求解转化为对偶积分方程,然后利用Schmidt方法代替第二类Fredholm方法求解对偶积分方程,克服了Fredholm方法求解积分方程时积分核为奇异时遇到的困难。
4) Dual quermassintegrals
对偶均质积分
1.
We establish the Brunn-Minkowski inequality for the dual quermassintegrals of harmonic radial combinations of star bodies,and prove its equivalence properties to the Minkowski inequality for L_p-dual mixed quermassintegrals.
该文建立了星体调和径向组合对偶均质积分的Brunn-Minkowski型不等式,并证明了它与Lp-对偶混合均质积分的Minkowski不等式是等价的。
5) Dual quermassintegral
对偶均质积分
1.
In this paper, we give a dual quermassintegral version of Busemann-Petty problem in Geometric convexity, and extend the Funk s section theorem to the dual quermassintegral.
本文主要建立了凸体几何中Busemann-Petty问题的一个对偶均质积分形式,并将Funk截面定理推广到了对偶均质积分形式。
6) dual integral equations
对偶积分方程组
1.
Based on method of Mellin transform, the dual integral equations of complex and more general form is solved.
本文基于Mellin变换法求解复杂更一般形式的对偶积分方程组。
2.
Based on Copson method, the dual integral equations of more general form is solved.
将 Copson法推广、应用于一般形式的对偶积分方程组的求解 。
补充资料:Harnack不等式(对偶Harnack不等式)
Harnack不等式(对偶Harnack不等式) quality (dual Hatnack inequality) Harnack in- 【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o 0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|