1) Gas Reynold's equation
气体雷诺方程
2) Reynolds equation
雷诺方程
1.
Analysis on the coefficients of the control interfaces for solving Reynolds equation in extreme conditions;
极端条件下雷诺方程控制界面系数算法研究
2.
Based on the N-S equation,a nonlinear Reynolds equation for a steady-state micro-scale flow field was derived.
从N-S方程出发,推导了螺旋槽内稳态微尺度流动场的非线性雷诺方程。
3.
Using Reynolds equation to derivate the formula for calculating bearing pressure distribution,then calculate pressure distribution of main bearing shell of tube mill on the basis of this formula.
本文用雷诺方程推导出计算轴承压力分布的差分公式;并以此为依据,计算管磨机主轴承轴瓦的压力分布;并为轴瓦的结构设计提出建议。
3) reynold equation
雷诺方程
1.
In this paper, the two dimensional-nowing Reynold equation is treated with then finite difference, method and the discrete equations are solved with the Gauss-Seidel iterative method.
采用有限差分法,对二维流动雷诺方程进行离散处理;用Gauss-Seidel迭代法解方程组。
4) Reynolds equation
雷诺方程式
5) RANS equations
雷诺平均方程
6) generalized Reynolds equation
广义雷诺方程
1.
We seek simultaneous solutions of the generalized Reynolds equation,the transient 3D energy equation of oil film,the transient 3D solid heat transfer equation of bush bearings and the motion equation of journal bearings.
联立求解广义雷诺方程、油膜瞬态三维能量方程、轴瓦瞬态三维固体热传导方程及轴颈的运动方程,并考虑粘度和密度随温度及压力的变化,在油膜与轴瓦界面使用热流连续性边界条件,得到了在载荷突然变化时汽轮机组椭圆轴承的瞬态响应。
2.
The finite element method was employed to solve the two-dimensional energy equation defined in the circumferential and radial direction and the generalized Reynolds equation with tw.
依据圆轴承温粘热效应的三维模型计算结果,油膜温度场变化沿轴向可以忽略,在轴瓦和轴颈与油膜界面使用绝热边界条件,用有限元方法联立求解周向和径向二维能量方程、双雷诺边界条件广义雷诺方程、周向速度方程和温粘方程,给出中心对称面上油膜温度和速度分布,轴承特性系数与工程上应用数据吻合。
3.
The simultaneous solution of the generalized Reynolds equation, transient threedimensional energy equation of the oil film, transient threedimensional heat transfer equation of the bush, and the motion equation of the journal was realized by taking into account the variation of the oil viscosity and density with temperature and pressure.
联立求解广义雷诺方程、油膜瞬态三维能量方程、轴瓦瞬态三维固体热传导方程及轴颈的运动方程,并考虑粘度和密度随温度及压力的变化,在油膜与轴瓦界面使用热流连续性边界条件,确定了在承受稳态载荷时圆轴承在启动过程中的温度变化情况。
补充资料:传热学:雷诺方程
雷诺方程:
湍流的平均运动方程(见黏性不可压缩流体动力学)。提出这一方程的英国物理学家O.雷诺认为﹐黏性不可压缩流体作湍流运动时﹐流场中的瞬时参量﹕压力和速度分量﹑﹑ 仍旧满足纳维-斯托克斯方程﹐并可将该瞬时参量分解为时间平均值﹑﹑﹑和在时间平均值上下涨落的脉动值﹑﹑﹑﹐将其代入上述方程并取时间平均后﹐可得到用平均量表示的湍流运动方程式。雷诺本人採用的是时间平均法﹐后人也有採用统计平均法的﹐这些都称为雷诺方程。在直角坐标系中﹐单位质量的平面流动雷诺方程是﹕在方向投影﹕
在方向投影﹕
方程的基本形式和各项物理意义都与纳维-斯托克斯方程相同。由方括弧给出的最后一项是雷诺方程的特点﹐它反映由湍流动量转化的应力(称为湍流应力)﹐是未知量。因此﹐流动方程组不再封闭。1925年﹐德国物理学家L.普朗特提出混合长度理论﹐后来人们又建立了各种数学模型﹐力图用流场的速度平均值来描述湍流应力﹐但仍未获得统一的完善的模型﹐它仍然是湍流理论研究的重要课题。
湍流的平均运动方程(见黏性不可压缩流体动力学)。提出这一方程的英国物理学家O.雷诺认为﹐黏性不可压缩流体作湍流运动时﹐流场中的瞬时参量﹕压力和速度分量﹑﹑ 仍旧满足纳维-斯托克斯方程﹐并可将该瞬时参量分解为时间平均值﹑﹑﹑和在时间平均值上下涨落的脉动值﹑﹑﹑﹐将其代入上述方程并取时间平均后﹐可得到用平均量表示的湍流运动方程式。雷诺本人採用的是时间平均法﹐后人也有採用统计平均法的﹐这些都称为雷诺方程。在直角坐标系中﹐单位质量的平面流动雷诺方程是﹕在方向投影﹕
在方向投影﹕
方程的基本形式和各项物理意义都与纳维-斯托克斯方程相同。由方括弧给出的最后一项是雷诺方程的特点﹐它反映由湍流动量转化的应力(称为湍流应力)﹐是未知量。因此﹐流动方程组不再封闭。1925年﹐德国物理学家L.普朗特提出混合长度理论﹐后来人们又建立了各种数学模型﹐力图用流场的速度平均值来描述湍流应力﹐但仍未获得统一的完善的模型﹐它仍然是湍流理论研究的重要课题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条