说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多轴应力应变状态
1)  multiaxle stress-strain state
多轴应力应变状态
2)  multiaxial stress state
多轴应力状态
1.
The conventional safety factor based on classical strength theory could not eyactly express the safety for materials in multiaxial stress states,and it was difficult to apply the general multi-parameter strength criteria directly.
针对基于古典强度理论的传统安全系数定义不能确切地表示材料在多轴应力状态下的安全度,也很难直接应用于一般的多参数强度准则的问题,引入失效距离的概念,给出了多轴强度安全系数的定义及其计算方法。
2.
Approximate calculation of local stress and strain under multiaxial stress state is conducted with the Neuber and Glinka methods.
根据弹塑性力学基本原理 ,建立了单轴与多轴应力应变之间的关系 ,应用多轴Neuber法和Glinka法 ,计算了圆棒结构件应力集中处的应力应变 ,并与弹塑性有限元结果进行了比较 ,分析表明 :多轴应力状态下直接采用单轴近似算法会产生较大误差 ,采用多轴Neuber法及Glinka法计算得到的局部应力应变结果与弹塑性有限元结果比较接近。
3.
We investigate the damage behaviour of concrete under multiaxial stress state based on hypothesis that the damage is orthogonally aeolotropic in principal stress space.
针对多轴应力状态下的混凝土损伤问题,假设损伤在主应力空间是正交各向异性的,选用Ottosen四参数破坏准则来确定多轴应力状态下混凝土破坏的极限应力,确定强度提高系数,结合Saenz提出的典型单轴本构模型建立等效单轴本构模型。
3)  deformation/triaxial stress state
变形/三轴应力状态
4)  stress-strain appearance
应力应变状态
1.
On the stress-strain appearance of expansibility clay when expand-shrink transform;
浅论膨胀土在胀缩变形过程中的应力应变状态
5)  Biaxial stress condition
双轴向应力状态
6)  state of uniaxial stress
单轴应力状态
补充资料:应力状态和应变状态
      构件在受力时将同时产生应力与应变。构件内的应力不仅与点的位置有关,而且与截面的方位有关,应力状态理论是研究指定点处的方位不同截面上的应力之间的关系。应变状态理论则研究指定点处的不同方向的应变之间的关系。应力状态理论是强度计算的基础,而应变状态理论是实验分析的基础。
  
  应力状态  如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
  
  
  应力圆  是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
  
  
  应变圆  也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2
  
  广义胡克定律  当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
  
  
  
  
  
  
  
  
  
  
  
  
   τxy=Gγxy
  
  
  
   τyz=Gγyz
  
  
  
   τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
  
  
  
   单向应力状态下的胡克定律则为σ=Eε。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条