说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 变量分离
1)  variable separation
变量分离
1.
Virasoro symmetry subalgebra,multi-linear variable separation solutions and localized excitations of higher-dimensional differential-difference models;
高维微分-差分模型的Virasoro对称子代数,多线性变量分离解和局域激发模式
2.
The improvement to the method of variable combination makes the problem of dual variable separation in geometric programming with a multi difficulty degree simple and easy to solve.
对变量组合法进行了改进,使多困难度几何规划中对偶变量分离问题简单易解。
3.
By using Mathematica and multi-linear variable separation(MLVS) approach which is based on the Bcklund transformations, a new exact solution which include low dimensional arbitrary functions of the (2+1)-dimensional modified Veselov-Novikov system is obtained.
借助Mathematica软件,在Backlund变换的基础上采用多线性变量分离(MLVS)方法,得到了(2+1)维修正Veselov-Novikov系统的一个含低维任意函数的新的精确解。
2)  separation of variables
分离变量
1.
Accurate solution of temperature function could be obtained through the methods such as separation of variables,Fourier series,Fourier transform and linear sup.
研究表明:可用非稳态导热数学模型表述钢坯热过程;用分离变量、傅立叶级数、傅立叶变换、线性叠加等方法,求得钢坯温度函数精确解;解析解与FEMLAB3。
2.
A perturbation theory for dark solitonic solutions of the defocusing nonlinear Schrdinger equation,which bases on the separation of variables and the construction of a complete set of squared Jost solutions is developed.
基于分离变量法和构件平方约斯特(Jost)解完备集发展了研究非线性Schrdinger(NLS+)方程的暗孤子微扰理论,给出了求微扰NLS+方程绝热解的一般方法,暗孤子参数演化方程和一级修正计算公式。
3.
Avoiding the complex and precise discussion,this article,for a type of elemental heat equation,is going to give a convenient method of solving heat equation by separation of variables and to expand the range of solvable problems with the help of Fourier series.
本文避开微分方程定性理论的复杂、严谨讨论 ,想就一类最基本的热传导方程 ,通过分离变量的方法将偏微分方程的边值问题转化为常微分方程的边值问题 ,给出一种较简捷的定解模式 ,并利用Fourier级数 ,将解题范围加以推广。
3)  separated variables
分离变量
1.
The global exponential stability of equilibrium states of a class of nonlinear separated variables systems with bounded time-varying delays was investigated.
讨论了一类具有有界可变时滞分离变量系统平衡点的全局指数稳定性。
2.
The stabilization problem for a class of nonlinear continuous control systems with separated variables is investigated.
研究了一类非线性连续可分离变量控制系统的镇定问题。
3.
The global stability and instability of generalized systems with separated variables are studied by using Lyapunov s function method for general systems with separated variables,some sufficient criteria are obtained by means of analysis technique and these results popularized the existed results in relevant literatures.
借助一般可分离变量系统的Lyapunov函数方法,对一类广义分离变量系统的全局稳定性和不稳定性进行了讨论,通过分析技巧得到了由系统自身特点所给出的显示代数判据,这些结果验证方便,改进和推广了有关文献中的相应结果。
4)  separating variables
分离变量
1.
Stability of nonlinear and nonautonomous systems of generalized separating variables;
广义分离变量非线性非自治系统的稳定性
2.
Through the separating variables function method, a quadric and cubic non-linear differential equation was obtained by using the Galerkin method.
通过分离变量函数法,用Galerkin法得到了一个含二次、三次的非线性微分方程。
3.
A method of separating variables to analyse problems of forced vibration of rigid/viscoplastic eircular plates is suggested.
本文用分离变量方法分析刚/粘塑性圆板的强迫振动问题,给出了该板强迫振动时的挠度与内力解。
5)  Variable separation
分离变量
1.
The basic thinking of solving boundary value problems by variable separation method under rectangular coordinate system is introduced,and the simple method of solving boundary value problems is summarized.
介绍了在直角坐标系下,用分离变量法来求解边值问题的基本思路,并归纳总结出了求解边值问题的简捷方法。
2.
By means of an extended Riccati equation mapping approach,a new type of variable separation solutions with two arbitrary functions of(2+1)-dimensional dispersive long-water wave(DLW) system are derived.
利用拓展的Riccati方程映射法,进一步研究了(2+1)维色散长波系统,得到了方程的1组新的含有2个任意函数的分离变量解。
6)  separate variable
分离变量
1.
Optical transfer function of a specific lens is determined,and a image of the lens is calculated in the screen with separate variable by computer calculation.
通过数值计算的方法,依据一个具体的透镜的光学传递函数,利用分离变量的方法,算出了像屏上所成的像。
补充资料:分离变量法


分离变量法
separation of variables, method of

  分离变且法!史钾.6阅of var认ues,n长d加吐of;pa3朋-二eH一,nePeMeHn以MeTO八1 同f议州政法(Founer Inet址心).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条