1) thin axisymmetric cylindrical shell
薄圆柱壳体
1.
Numerical solutions of mixed finite elements for thin axisymmetric cylindrical shell with free edge boundary conditions;
自由边界条件轴对称薄圆柱壳体的混合有限元数值解
2) finite long and thin cylindrical shell
薄壁圆柱壳体
1.
The analytical expressions of the driving point mobility of a finite long and thin cylindrical shell subjected to combination of multiple excitations are derived based on classical equations of vibration.
从经典的薄壁壳体振动方程出发,推导出有限长薄壁圆柱壳体在复杂激励下的驱动点导纳解析表达式,并对控制壳体振动响应的潜在机理进行了研究。
4) thin cylindrical shell
圆柱薄壳
1.
Strength of internally pressurized axially compressed steel thin cylindrical shell with multiple weld depressions;
有多条轴对称焊接凹陷的钢圆柱薄壳在内压力和轴压力共同作用下的强度
2.
Small deformation dynamics in thin cylindrical shell with initial stress;
初应力圆柱薄壳的小变形动力学
3.
Actuation characteristics and control of thin cylindrical shells laminated with photostrictive actuators
光电层合圆柱薄壳的激励特性及控制
5) cylindrical thin shell
圆柱薄壳
1.
The theory on crack mechanics of maximum circumferential stress is used for deducing cracking angle and cracking stress of the cylindrical thin shell with crack under the action of twisting moment,and a crack criterion on Ⅰ-Ⅱ compound crack is established.
采用断裂力学的最大周向应力理论 ,推导出带有穿透裂纹的圆柱薄壳在扭矩作用下裂纹开始扩展的开裂角和开裂应力 ;建立了Ⅰ -Ⅱ复合型裂纹的断裂准则 通过分析该圆柱薄壳的破坏形态 ,确定其临界应
2.
In allusion to cylindrical thin shell, how to describe the initial stress and analyze the effect brought by initial stress to piece s mechanical beha.
对于圆柱薄壳,本文就这些问题给出了讨论。
6) half cylinder shell
半圆柱薄壳
补充资料:横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
垂直于柱轴(横向)磁场H0中的空心超导长圆柱体就其磁性质讲是单连通超导体。徐龙道和Zharkov由GL理论给出中空部分的磁场强度H1和样品单位长度磁矩M的完整解式,而在`\zeta_1\gt\gt1`和$\Delta\gt\gt1$条件下为:
$H_1=\frac{4H_0}{\zeta_1}sqrt{\frac{\zeta_2}{\zeta_1}}e^{-Delta}$
$M=-\frac{H_0}{2}r_2^2(1-\frac{2}{\zeta_2})$
这里r1和r2分别为空心柱体的内、外半径,d=r2-r1为柱壁厚度,ζ=r/δ(r1≤r≤r2),Δ=d/δ,δ=δ0/ψ,δ0为大样品弱磁场穿透深度,ψ是有序参量。显然此时H1→0,M→-H0r22/2,样品可用作磁屏蔽体。当$\zeta_1\gt\gt1$,$\Delta\lt\lt1$时,则
H1=H0/(1 ζ1Δ/2),
M=-H0r23[1-(1 ζ1Δ/2)-1]。
若$\zeta_1\Delta\gt\gt1$,则$H_1\lt\ltH_0$或H1≈0。所以,虽然$d\lt\lt\delta$,但磁场几乎为薄壁所屏蔽而难于透入空心,称ζ1Δ/2为横向磁场中空心长圆柱体的屏蔽因子。当$\zeta_1\Delta\lt\lt1$时,则H1≈H0,磁场穿透薄壁而均进入空腔,失去屏蔽作用,此时M≈0。类似于实心小样品,由GL理论可求出薄壁样品的临界磁场HK1,HK,HK2和临界尺寸等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条