2) virtual displacement FEM
虚位移有限元法
1.
Based on analysis of virtual displacement FEM and Galerkin FEM for Biot consolidation, the load arisen by the altitude z is discussed.
对虚位移有限元法和伽辽金有限元法推导的Biot固结有限元方程进行了研究,详细讨论了位置高度z引起的荷载项(即位能),发现分别采用上述两种方法得到的位置高度z引起的荷载项不相等。
3) finite displacement method
有限位移法
1.
Research on design of certain tower free pedestrian suspension bridge based on finite displacement method,rational selections of layout,main cable,suspender and reinforcement beam of the bridge are given and relevant analysis to strain of this bridge is conducted as per actual characteristics of the project, also research of cable wind-proof wire design.
基于有限位移法,对某无塔非对称人行悬索桥进行了设计研究,根据工程的实际特点,对该桥的总体布置、主缆、吊杆以及加劲梁等进行了合理选择,对受力进行了相应分析,同时也对缆风索进行了设计研究。
4) displacement-based finite element method
位移基有限元
1.
Endochronic plasticity based on non-yield surface is deduced into the displacement-based finite element method and the plastic strain direct method is proposed for the plane stress problem.
介绍了位移基有限元方法 ,并在位移基有限元中嵌入了无屈服面内时本构理论 ,并提出了相应于平面应力问题的直接代入法。
5) FEM displacement inverse computation
有限元位移反演
6) displacement-pressure FEM
位移-压力有限元
补充资料:弹—塑性有限元法
弹—塑性有限元法
elastic-plastic finite element method
刚度矩阵,进行下一个增量步计算,直到求得整个弹一塑性间题的解。根据采用的刚度矩阵形式,可分为切线刚度法和割线刚度法。 .代法是对变形体施加载荷采用某一近似刚度矩阵求出初步位移解,根据此解计算应力和相应的载荷,并用载荷的差值继续计算附加位移增量,按上述步骤进行叠代,直到附加位移小到某一许可值为止。把所有的位移叠加起来,即得到要求的解。根据刚度矩阵的形式不同可分为直接叠代法、牛顿法、修正牛顿法和拟牛顿法等。混合法把逐步加载法和叠代法同时使用,在某一增量步内进行叠代以提高计算精度。 大变形弹一塑性有限元法大变形理论中,物体变形的描述有两种方法:拉格朗日法和欧拉法。拉格朗日法追随质点研究物体的变形,质点以在某一构形下的位置标记,称为物质坐标系或拉格朗日坐标系。此构形称初始构形。欧拉法以空间固定的坐标(欧拉坐标系)来描述质点的运动,其坐标随质点和时间而变化。物体在任一时刻的构形称现时构形。 物体的现时坐标x,相对于物质坐标的偏导数刁x,/ax’称变形梯度。它把参考构形中质点凡的邻域映射到现时构形x‘的一个邻域,刻划了整个变形(线元的伸缩和转动)。它是有限变形理论的重要物理量。 大变形有限元中,应变张量有两种表示形式:以初始构形定义的格林应变张量和以当前构形为参考构形的阿尔曼西应变张量(见应变张量)。应力张量根据定义方式不同有3种形式:柯西应力张量(有时称欧拉应力张量),拉格朗日应力张量和克希霍夫应力张量。为保证应力不受刚体转动的影响,在本构关系中采用耀受应力率: 此一房,一氏户。户,一‘。,式中礼为欧拉应力率。 用欧拉法描述的大变形弹一塑性有限元的速率形本构关系为 弓一Dl*勺式中如为应变速度。欧拉描述的虚功方程是 万氏,“一dy一万尸!占一+好一‘1)式(1)的左端为变形能,右端是体积力F和表面力p在虚位移而:上做的虚功。在分析金属成形大变形过程时也常用欧拉描述法并忽略弹性体积微小变化的增量虚功率方程(见虚功原理)由此方程出发可得如下的平衡方程: K滋一尺式中K为刚度矩阵,它由小变形弹一塑性刚度矩阵和初应力刚度矩阵组成;成为节点速度列阵。 欧拉描述的虚功方程式(l)可按变换规则转化为拉格朗日描述的虚功方程,并由此可得如下的平衡方程式: K(u)u=R式中K(u)称刚度矩阵,由3部分组成:K(u)一KL+KN+Ks。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条