1) derivative approximation
导数逼近
1.
The derivative approximation of modified Hermite interpolation on the weighted Lp norm
修改的Hermite插值算子在加权L_p范数下的导数逼近
2.
Mean convergence of derivative approximation by quasi-Hermite interpolation operators
拟Hermite插值算子导数逼近的平均收敛性
3.
In this paper, we mainly consider the derivative approximation of continuous differentiable functions by the Hermite interpolation which is based on the zeros of the Chebyshev polynomials of the first kind.
本文主要讨论了以第一类Chebyshev多项式的零点为插值结点组的Hermite插值算子在加权平均范数意义下的导数逼近问题,同时给出了一种基于第二类Chebyshev多项式零点的拟Hermite插值算子,并讨论了其逼近导数的平均收敛性。
2) differential coefficient approximation
导数逼近法
1.
In order to solve the problem of parameter setting during the design of a software phase-locked loop(SPLL) is designed,the Z domain mathematical model by the way of differential coefficient approximation is built and the influences of the parameters\' changes to the magnitude frequency responses of both the whole loop and loop filter which is one portion of PLL are studied.
为了解决软件锁相环设计时遇到的参数设置问题,通过导数逼近法给出了软件锁相环的Z域数学模型,并研究了参数变化对环路滤波器幅频响应及闭环幅频响应的影响,从而得到阻尼系数、系统增益、采样率与系统性能之间的关系,为实际设计软件锁相环时参数的设置提供了理论依据和参考。
3) approximation to the derived function
导函数的逼近
4) Missile approach
导弹逼近
5) approximation with rest-ricted ranges of derivatives
约束导数值域逼近
6) Function approximation
函数逼近
1.
The function approximation ability comparison of two wavelet networks and their applications;
两种小波网络的函数逼近能力比较与应用
2.
Function approximation capabilities of intuitionistic fuzzy reasoning neural networks;
直觉模糊神经网络的函数逼近能力
3.
Function Approximation Study of General Fuzzy System;
模糊系统的函数逼近特性研究
补充资料:delaVallée-Poussin导数
delaVallée-Poussin导数
de la VaDce - Poussin derivative
山hV团倪一P加石幽1.导数【de hVa肠纯一R版动l心由.dve;Ba服ny伙ella甲山即口.1,广义对称导数(罗nerali-欲互s脚四netric deriVa石ve) 由Ch.J.de h vall能一Poussin(【11)定义的一种导数.设r为偶数,并设存在占>O使对满足}t}<占的一切t,有 合{f(x。+‘,+f(x。一艺,,- 一刀。+冬:,口2+…+弄。r且+:(:):r,(*) 2一r名r!一rr‘、一,一,其中声:,…,戊为常数,下(t)~o(当t~O)且下(o)=0.数尽”f(r)(x0)称为函数f在点x。的:阶dehvallee-Poussin导数或;阶对称导数. 奇阶r的dehV么11阮一Po璐in导数可类似定义,只要把方程(*)代之为 冬仃(、+‘)一了(、一:)}- 2 一。。1十冬‘,。、十…十共:r坟十:(:):: 3!一厂Jr!一r”‘、一z一’ deh从山阮一Poussin导数左,帆)与R~nn二阶导数相同,后者常称为 Sch认么反导数.若关r)闻存在,则几一2)闻(r)2)也存在,但f(r一l)(x0)未必存在.若存在有限的通常双边导数f(r)帆),则人r)帆)二f‘r)(x0).例如,对函数f(x)二sgnx,f(川(0)=0,k=1,2,‘二,但左*+1)(。)(k=0,1,…不存在.若de h vall由一Po.in导数人。)(x0)存在,则由f的Fo~级数逐项微分r次所得级数S‘r)(f)在x。对于“>r是(C,的可和的,其和为寿)帆)([2〕)(见C威的求和法(。滋ms~·tion methods)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条