1) stagnation region
驻点区
1.
By means of the direct simulation Monte Carlo method, the flow-field and optical radiation characteristic of stagnation region in reentry process are calculated in this paper.
本文用直接模拟蒙特卡罗法,对再入体驻点区域的流场、光辐射特性进行了研究。
2) near the stagnation point
驻点近区
1.
The result shows that,near the stagnation point,the angle deformation is always increasing along the coming fluid to the outing fluid,and the changing rate near the stagnation point is maximum.
采用理想流体对称碰撞模型,分析了爆炸焊接流场中沿流线的物理变形,推导出了角变形的理论计算公式,并采用Visual C++语言对其进行了编程计算,获得了驻点近区角变形的大小及变化规律。
3) mass transfer to stagnant point
驻点区域传质
4) stagnation
[英][stæg'neiʃən] [美][stæg'neʃən]
驻点驻止
5) stagnation point
驻点
1.
It is important to analyze the distribution of strain rate near the stagnation point for understanding the mechanic and heat behaviors of the material during explosive welding.
为了认识爆炸焊接驻点近区材料的力学和热学行为 ,分析波状界面和绝热剪切带生成 ,采用理想流体对称碰撞模型沿流线研究了驻点近区的应变率分布规律 ,并推导出了驻点应变率的理论计算公式。
2.
The calculation of stagnation point position of straight pipeline section with both movable ends and L-type pipeline section with bend at one end and bellows type expansion joint at other end is discussed.
探讨了两侧为活动端的直管段及一侧活动端为弯头,而另一侧活动端为波纹管补偿器的水平转角管段驻点位置的计算。
3.
In allusion to Funar Conjecture :"If a random triangle lies in a closed unit square,then its inscribed circle s radius,r≤(5-1)/4",an equivalent minimum problem about a function of 2-variables is studied;the stagnation point and its value,value on the boundary of the function of 2-variables are studied,the equivalent problem is proved correct,so the Funar Conjecture is proved correct.
针对Funar猜想:“设任意三角形位于闭单位正方形内,则该三角形的内切圆半径,r≤(5-1)/4”,研究了与其等价的某二元函数的最小值问题;利用对此二元函数驻点及其取值、边界取值讨论,证明了等价问题成立,进而此Funar猜想得证。
6) critical point
驻点
1.
Based on those ba- sic theories , the critical point method of optimal polarization is given and reinforced at length .
在此基础上给出了最优极化分析驻点法,同时进行了补充并修正了文献中的错误。
2.
Darboux s theoryis used t prove that the extreme ualue of univariate function is its maximum or minimum when it has only one critical point.
运用布定理证明“一元函数只有一个驻点时 ,其极大 (极小 )值就是最大 (最小 )值” 。
补充资料:驻泊点
驻泊点
naval ship harbour station
zhubodiQn驻泊点(naval ship harbor station)具有保障设施,供舰艇驻泊的一段海(江河)岸及其毗连的水域、陆域。主要的驻泊点,通常是海军基地或军港的一部分或全部。按驻泊舰艇的不同,分为驱逐舰驻泊点、扫雷舰驻泊点、潜艇驻拍点、导弹艇驻泊点、勤务舰船驻泊点等;按主要功能,分为主要驻泊点、临时驻泊点、预备驻泊点、机动驻泊点等。主要驻泊点,通常有:天然或人工的避风浪条件;码头、防波堤、护岸等水工建筑物;通信、导航、物资、技术、医疗保障及人员训练、生活等设施;指挥、保障机构及其所属分队,能实施指挥、管理和遂行各种保障。有的还设有防御配系。临时驻泊点,设施简单或基本没有设施。预备驻泊点,一般在战前按任务选址,预筑设施,或顶选民港备用,平时不驻泊舰艇。机动驻泊点,一般使用便于机动的制式器材或就便器材临时开设。中国人民解放军海军曾将舰艇部队驻泊和临时停泊地点划分为驻泊点、停泊点、补给点三类。 (梁鑫)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条