1) matrix fission spectrum
矩阵裂变谱
2) matrix splitting
矩阵分裂
1.
This paper describes a novel power flow solution algorithm for solving distribution systems,using the relaxation method for Jacobian matrix inversion,as well as the matrix splitting method for distribution network with loops.
将矩阵求逆运算的松弛方法应用于配电网的潮流计算,并利用矩阵分裂法,导出了一种新的配电网潮流计算算法。
2.
In order to solve the QP problem, we apply the combination of the gradient projection and successive overrelaxation (SOR) based on the matrix splitting.
将这种用于回归估计的最小二乘广义支持向量机表示成标准的二次规划(QP)问题,采用基于矩阵分裂的超松弛法同投影梯度法相结合的算法来解这一QP问题。
3.
Using matrix splitting and relaxation method of matrix inversion,two new sparse approximate inverse preconditioners or preconditioning methods are proposed.
利用矩阵分裂以及矩阵求逆运算的松弛方法,提出了两种新的稀疏近似逆预条件子或预处理方法,这两种预处理方法与牛顿-广义极小残余算法相结合,可以改进潮流计算的收敛性。
3) spectral matrix
谱矩阵
1.
After the wavelet package transform of signal is conducted,the space movement property of particle is calculated by spectral matrix method,constituting the corresponding filtered function.
利用小波包分析在时域和频域同时具有良好的局部化特性,对信号进行小波包变换后,用谱矩阵法计算质点的空间运动特性,构造相应的滤波函数,对分解后的信号进行滤波,将滤波结果用逆小波包变换进行重构,实现了滤除干扰、保留有用信号的目的,取得了非常满意的效果。
2.
The spectral matrix of the six components of the seismic ground motions is given based onthe principal axis concept of ground motions.
地震动各分量间的谱矩阵李宏男(土木工程系)关键词地震动;转动分量;谱矩阵分类号:P315。
3.
We construct the spectral matrix ρ(λ) and Weyl Matrix M(λ) of leftdefinite singular secondorder SturmLiouville equations,and also give the relationships between the elements of Weyl Matrix and the elements of spectral matrix.
研究了一类特殊边界条件下两端奇异的左定Sturm-Liouville问题,建立了左定Sturm-Liouville问题的谱矩阵ρ(λ)与Weyl矩阵M(λ),并给出了谱矩阵ρ(λ)的元素与Weyl矩阵M(λ)的元素之间的关系。
4) spectrum matrix
谱矩阵
1.
Based on polarization analysis via spectrum matrix proposed by Samson(1973) and complex trace analysis, this paper put forward a method called the least polarization filtering.
以Samson(1973)提出的谱矩阵极化分析方法为基础,结合复地震道技术给出最小极化度滤波方法。
6) spectral matrix
频谱矩阵
补充资料:裂变能谱
分子式:
CAS号:
性质:核裂变瞬发中子的能量分布N(E)称为裂变中子能谱或裂变能谱。
CAS号:
性质:核裂变瞬发中子的能量分布N(E)称为裂变中子能谱或裂变能谱。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条