1) Model reference control system
模型参考控制系统
3) model reference adaptive control system
模型参考自适应控制系统
1.
BP neural network model reference adaptive control system based on the particle swarm optimizer;
基于粒子群优化的BP神经网络模型参考自适应控制系统
4) MRAC system
模型参考自适应控制系统(MRACS)
5) model reference control
模型参考控制
1.
NN model reference control is adopted in the research on active vibration control of simply supported beam.
基于神经网络在系统辨识和动态系统控制中的成功使用,介绍了典型前向网络的BP算法,采用模型参考控制的神经网络控制结构对一简支梁进行了振动主动控制研究,并详细阐述了在MATLAB环境下的仿真过程和仿真结果,最后展望了神经网络在冶金行业板形控制中的应用。
2.
Based on computer hard disk,taking into account dual-stage actuator serve system,model reference control for improving the output of VCM servo loop is proposed and VCM position is returned to MA servo loop as reference input.
基于计算机硬盘的两级驱动伺服系统 ,采用模型参考控制改善VCM伺服环的输出 ,并将其回馈给MA伺服环作为输入 ,利用MA高频宽、响应快等优点 ,调节VCM输出及位置误差信号 ,获得较为理想的复合输出结果。
3.
Model reference control and repetitive control were applied in multi-channel electric hydraulic synchron-force servo loading system,and a new control method based on online learning was put forward.
将模型参考控制和重复控制相结合应用到多通道电液力同步加载系统中,提出了一种在线学习控制的新方法。
6) model reference controller
模型参考控制器
1.
A kind of model reference controller has been designed in the paper which is adopted the idea of model refer- enee adaptive control theory.
借鉴模型参考控制器的设计思想,采用经过线性二次型输出反馈控制后的系统作为参考模型,以它的输出作为期望输出,让实际输出跟随这个期望输出;二者的误差信号反馈到原系统的输入端,设计出一种模型参考控制器。
补充资料:模型参考适应控制系统
包含有理想系统模型并能以模型的工作状态为标准自行调整参数的适应控制系统,简称模型参考系统。这种适应控制系统已有较成熟的分析综合理论和方法。模型参考适应控制系统最初是为设计飞机自动驾驶仪而提出的,初期阶段由于技术上的困难而未能得到广泛应用。随着微型计算机技术的发展,这种系统的实现已较容易。模型参考适应控制技术已在飞机自动驾驶仪、舰船自动驾驶系统、光电跟踪望远镜随动系统、可控硅调速系统和机械手控制系统等方面得到应用。
结构和工作原理 图1是说明模型参考适应控制系统组成结构和工作原理的示意图。其中,参考模型是一个具有固定结构和恒定参数的理想系统。在系统的参考输入作用下,模型的输出被规定为系统的受控对象所应具有的理想输出。由于外界干扰和内部的随机变化(参数漂移等),受控对象的实际输出与理想输出之间会出现误差e(t)。自适应环节根据误差信号,按照事先设计的调整策略(自适应律)向自适应控制器发出调整信号。控制器根据参考输入信号r(t)、受控对象实际输出的反馈信号和调整信号,对受控对象发出相应的控制信号,使误差e(t)减小以至消失,也就是使受控对象的输出接近于理想状态。
设计问题 在模型参考适应控制系统中,自适应环节常是非线性的。如果设计不当,可能使整个系统失去稳定(见稳定性)。自适应律的合理设计是模型参考系统设计中的核心问题。为使系统稳定工作,可采用李雅普诺夫直接法(见李雅普诺夫稳定性理论)或波波夫超稳定性理论的概念和方法来设计自适应律。在图2 的系统中,受控对象是一个一阶系统,它的传递函数为K/(Ts+1)。其中K为未知参数,是需要自适应调整的增益,T是已知常数。参考模型的传递函数是K0/(Ts+1), K0是理想增益。对于这个系统,适应控制器是一个增益可调的放大器。它是按照李雅普诺夫方法来设计的,其中取李雅普诺夫函数V(e,x)=e2+λx2,λ≥0,x=K0- KS,KS是实际的系统增益。按照图2的结构组成的适应控制系统可稳定地工作,且可使输出偏差e(t)趋于零。
参考书目
Y.D.Landau, Adaptive Control: The Model Reference Approach, Marcel Dekker Inc., New York,1979.
结构和工作原理 图1是说明模型参考适应控制系统组成结构和工作原理的示意图。其中,参考模型是一个具有固定结构和恒定参数的理想系统。在系统的参考输入作用下,模型的输出被规定为系统的受控对象所应具有的理想输出。由于外界干扰和内部的随机变化(参数漂移等),受控对象的实际输出与理想输出之间会出现误差e(t)。自适应环节根据误差信号,按照事先设计的调整策略(自适应律)向自适应控制器发出调整信号。控制器根据参考输入信号r(t)、受控对象实际输出的反馈信号和调整信号,对受控对象发出相应的控制信号,使误差e(t)减小以至消失,也就是使受控对象的输出接近于理想状态。
设计问题 在模型参考适应控制系统中,自适应环节常是非线性的。如果设计不当,可能使整个系统失去稳定(见稳定性)。自适应律的合理设计是模型参考系统设计中的核心问题。为使系统稳定工作,可采用李雅普诺夫直接法(见李雅普诺夫稳定性理论)或波波夫超稳定性理论的概念和方法来设计自适应律。在图2 的系统中,受控对象是一个一阶系统,它的传递函数为K/(Ts+1)。其中K为未知参数,是需要自适应调整的增益,T是已知常数。参考模型的传递函数是K0/(Ts+1), K0是理想增益。对于这个系统,适应控制器是一个增益可调的放大器。它是按照李雅普诺夫方法来设计的,其中取李雅普诺夫函数V(e,x)=e2+λx2,λ≥0,x=K0- KS,KS是实际的系统增益。按照图2的结构组成的适应控制系统可稳定地工作,且可使输出偏差e(t)趋于零。
参考书目
Y.D.Landau, Adaptive Control: The Model Reference Approach, Marcel Dekker Inc., New York,1979.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条