1) JM-3 additive
JM-Ⅲ型增强剂
2) novel strengthening agent
新型增强剂
1.
The improvements of packaging paper strengths,including stiffness,ring crush compression resistance,folding endurance and tensile strength,by novel strengthening agents was investigated.
该文探讨了用新型增强剂提高纸页的包装强度:挺度、环压强度、耐折度、抗张强度;比较了几种增强剂对提高纸页包装强度的效果,确定了最合适的增强剂及用量,并研究了最合适的增强剂对不同纸浆、不同定量纸页包装强度的影响,确定采用4号增强剂且用量为0。
3) wrinkle resisting agent JM
防皱剂JM
4) JM model
JM模型
1.
A software reliability model for substation automation system based on improved JM model is set up in this paper.
建立了基于改进的JM模型的变电站综合自动化系统软件可靠性模型,改进模型在原有的JM模型基础上定义了故障消除概率,从而克服了原模型对于排错过程估计过于乐观的不足。
2.
As an important software reliability model,JM model is significant to study.
作为重要的软件可靠性模型,JM模型的研究具有重要意义。
3.
Based on JM model, we propose a software reliability prediction model involving fault-remove time which followed exponential distribution.
因此在JM模型的基础上,提出了排错时间为负指数分布的软件可靠性模型及本模型的极大似然参数估计方法。
5) reinforcing size
增强型浸润剂
1.
Effects of precipitates formed in reinforcing size during its use on glass fiber production and product quality are described,and various possible causes for precipitation analyzed.
介绍了增强型浸润剂在使用过程中产生的沉淀对生产和产品质量造成的影响,系统分析了可能产生沉淀的各方面原因。
2.
In this paper, a new type of reinforcing size that is used in fiber has been systematically studied.
本文研究的浸润剂主要用于SMC用的短切玻璃纤维,该增强型浸润剂赋予玻璃纤维良好的集束性、短切性、分散性、低静电、成型流动性,并使SMC具有优良的力学性能。
6) emulsion strengthens aid
乳液型增强剂
补充资料:增强型与耗尽型金属-氧化物-半导体集成电路
耗尽型MOS晶体管用作负载管,增强型MOS晶体管用作驱动管组成反相器(图1),并以这种反相器作为基本单元而构成各种集成电路。这种集成电路简称E/D MOS。
特点 E/D MOS电路的速度快,电压摆幅大,集成密度高。MOS反相器的每级门延迟取决于负载电容的充电和放电速度。在负载电容一定的条件下,充电电流的大小是决定反相器延迟的关键因素。各种MOS反相器的负载特性见图2。在E/D MOS反相器中,作为负载的耗尽型管一般工作在共栅源(栅与源相连,其电压uGS=0)状态。把耗尽型MOS晶体管的输出特性IDS~VDS曲线,沿纵轴翻转180o,取出其中uGS=0的曲线,即可得到E/D MOS反相器的负载(图2)。E/D MOS反相器具有接近于理想恒流源的负载特性。与E/E MOS反相器(负载管和驱动管都用增强型MOS晶体管的)相比,同样尺寸的理想E/D MOS电路,可以获得更高的工作速度,其门延迟(tpd)可减少至十几分之一。由于耗尽型管存在衬偏调制效应,E/D MOS反相器的负载特性变差,tpd的实际改进只有1/5~1/8。此外,由于E/DMOS反相器输出电压uo没有阈电压损失,最高输出电压uo可达到电源电压UDD=5伏(图1)。因此,比饱和负载E/E MOS反相器的电压摆幅大。另一方面,由于E/D MOS反相器的负载特性较好,为了达到同样的门延迟,E/D MOS反相器的负载管可以选用较小的宽长比,从而占用较少的面积;为了得到相同的低电平,E/D MOS反相器的βR值也比E/E MOS反相器的βR值小些。与E/E MOS电路相比,E/D MOS电路的集成密度约可提高一倍。
结构与工艺 只有合理的版图设计和采用先进的工艺技术,才能真正实现E/D MOS电路的优点。图3是E/D MOS反相器的剖面示意图。E/DMOS电路的基本工艺与 NMOS电路类同(见N沟道金属-氧化物-半导体集成电路)。其中耗尽管的初始沟道,是通过砷或磷的离子注入而形成的。为了使负载管的栅与源短接,在生长多晶硅之前,需要进行一次"埋孔"光刻。先进的 E/D MOS的结构和工艺有以下特点。①准等平面:引用氮化硅层实现选择性氧化,降低了场氧化层的台阶;②N沟道器件:电子迁移率约为空穴迁移率的三倍,因而N沟道器件有利于提高导电因子;③硅栅自对准:用多晶硅作栅,可多一层布线。结合自对准,可使栅、源和栅、漏寄生电容大大减小。
采用准等平面、 N沟道硅栅自对准技术制作的 E/D MOS电路,已达到tpd≈4纳秒,功耗Pd≈1毫瓦,集成密度约为300门/毫米2。E/D MOS电路和CMOS电路是MOS大规模集成电路中比较好的电路形式。CMOS电路(见互补金属-氧化物-半导体集成电路)比E/D MOS电路的功耗约低两个数量级,而E/D MOS电路的集成密度却比CMOS电路约高一倍,其工艺也比CMOS电路简单。E/D MOS电路和CMOS电路技术相结合,是超大规模集成电路技术发展的主要方向。
特点 E/D MOS电路的速度快,电压摆幅大,集成密度高。MOS反相器的每级门延迟取决于负载电容的充电和放电速度。在负载电容一定的条件下,充电电流的大小是决定反相器延迟的关键因素。各种MOS反相器的负载特性见图2。在E/D MOS反相器中,作为负载的耗尽型管一般工作在共栅源(栅与源相连,其电压uGS=0)状态。把耗尽型MOS晶体管的输出特性IDS~VDS曲线,沿纵轴翻转180o,取出其中uGS=0的曲线,即可得到E/D MOS反相器的负载(图2)。E/D MOS反相器具有接近于理想恒流源的负载特性。与E/E MOS反相器(负载管和驱动管都用增强型MOS晶体管的)相比,同样尺寸的理想E/D MOS电路,可以获得更高的工作速度,其门延迟(tpd)可减少至十几分之一。由于耗尽型管存在衬偏调制效应,E/D MOS反相器的负载特性变差,tpd的实际改进只有1/5~1/8。此外,由于E/DMOS反相器输出电压uo没有阈电压损失,最高输出电压uo可达到电源电压UDD=5伏(图1)。因此,比饱和负载E/E MOS反相器的电压摆幅大。另一方面,由于E/D MOS反相器的负载特性较好,为了达到同样的门延迟,E/D MOS反相器的负载管可以选用较小的宽长比,从而占用较少的面积;为了得到相同的低电平,E/D MOS反相器的βR值也比E/E MOS反相器的βR值小些。与E/E MOS电路相比,E/D MOS电路的集成密度约可提高一倍。
结构与工艺 只有合理的版图设计和采用先进的工艺技术,才能真正实现E/D MOS电路的优点。图3是E/D MOS反相器的剖面示意图。E/DMOS电路的基本工艺与 NMOS电路类同(见N沟道金属-氧化物-半导体集成电路)。其中耗尽管的初始沟道,是通过砷或磷的离子注入而形成的。为了使负载管的栅与源短接,在生长多晶硅之前,需要进行一次"埋孔"光刻。先进的 E/D MOS的结构和工艺有以下特点。①准等平面:引用氮化硅层实现选择性氧化,降低了场氧化层的台阶;②N沟道器件:电子迁移率约为空穴迁移率的三倍,因而N沟道器件有利于提高导电因子;③硅栅自对准:用多晶硅作栅,可多一层布线。结合自对准,可使栅、源和栅、漏寄生电容大大减小。
采用准等平面、 N沟道硅栅自对准技术制作的 E/D MOS电路,已达到tpd≈4纳秒,功耗Pd≈1毫瓦,集成密度约为300门/毫米2。E/D MOS电路和CMOS电路是MOS大规模集成电路中比较好的电路形式。CMOS电路(见互补金属-氧化物-半导体集成电路)比E/D MOS电路的功耗约低两个数量级,而E/D MOS电路的集成密度却比CMOS电路约高一倍,其工艺也比CMOS电路简单。E/D MOS电路和CMOS电路技术相结合,是超大规模集成电路技术发展的主要方向。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条