说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 预优共轭梯度法
1)  preconditioned conjugate gradient method
预优共轭梯度法
1.
It is an organic combination of Newton s method and preconditioned conjugate gradient method.
CF- PCG算法是牛顿法和预优共轭梯度法结合起来解牛顿方程的一种非精确牛顿法。
2)  modified preconditioned conjugate gradient
修正预优共轭梯度算法
1.
Based on the character of the complex structure of SF6 circuit breaker in three-phase-in-one-tank GIS,the modified preconditioned conjugate gradient(MPCG)algorithm applied to solve multi-nodes and multi-elements large sparse real positive defined symmetric matrix is analyzed and the program diagram of MPCG algorithm is also proposed.
针对实际的GIS三相共罐式SF6高压断路器模型结构复杂的特点,分析了适用于计算多节点、多单元的大型稀疏正定实对称矩阵求解的修正预优共轭梯度算法MPCG,给出MPCG算法的迭代流程。
3)  Preconditioned Generalized Conjugate Gradient Method
预优广义共轭梯度方法
4)  Pre-conditioned conjugate gradient method
条件预优共轭梯度法
5)  preconditioned generalization conjugate gradient
预优广义共轭梯度
1.
The LU factorization Newton step and the preconditioned generalization conjugate gradient(LUNewtonPGCG) step are combined.
提出了LU分解的牛顿步与预优广义共轭梯度步的优化组合的方法(简称LU Newton PGCG)。
6)  conjugated gradient optimum algorithm
共轭梯度优化算法
1.
This paper com bines conventional BP neural network with conjugated gradient optimum algorithm to optimize the calculations of network w.
用BP神经网络分析评判管道的腐蚀类型,可以避开寻找各种因素对腐蚀类型影响规律的难题,方便准确地分析评判出管道的腐蚀类型,但是传统的BP神经网络存在收敛速度较慢和容易陷入局部极小点两个问题,为此文章提出了将传统的BP神经网络与共轭梯度优化算法相结合,以优化网络权值和阈值的计算,同时确定了相应的计算方法。
补充资料:共轭梯度法
      又称共轭斜量法,是解线性代数方程组和非线性方程组的一种数值方法,例如对线性代数方程组
   A尣=??, (1)式中A为n阶矩阵,尣和??为n维列向量,当A对称正定时,可以证明求(1)的解尣*和求二次泛函 (2)的极小值问题是等价的。此处(尣,у)表示向量尣和у的内积。由此,给定了初始向量尣,按某一方向去求(2)取极小值的点尣,就得到下一个迭代值尣,再由尣出发,求尣等等,这样来逼近尣*。若取求极小值的方向为F在尣(k=1,2,...)处的负梯度方向就是所谓最速下降法,然而理论和实际计算表明这个方法的收敛速度较慢,共轭梯度法则是在 尣处的梯度方向r和这一步的修正方向p所构成的二维平面内,寻找使F减小最快的方向作为下一步的修正方向,即求极小值的方向p(其第一步仍取负梯度方向)。计算公式为再逐次计算
  
   (k=1,2,...)。可以证明当i≠j时,从而p,p形成一共轭向量组;r,r,...形成一正交向量组。后者说明若没有舍入误差的话,至多 n次迭代就可得到(1)的精确解。然而在实际计算中,一般都有舍入误差,所以r,r,...并不真正互相正交,而尣尣,...等也只是逐步逼近(1)的真解,故一般将共轭梯度法作为迭代法来使用。
  
  近来在解方程组(1)时,常将共轭梯度法同其他一些迭代法结合作用。特别是对病态方程组这种方法往往能收到比较显著的效果。其方法是选取一对称正定矩阵 B并进行三角分解,得B=LLT。将方程组(1)化为
    hу=b, (3)此处y=lT尣,b=l-1??,h=l-1Al-T,而。再对(3)用共轭梯度法,计算公式为
  
   (k=0,1,2,...)适当选取B,当B 很接近A时,h的条件数较之A大大减小,从而可使共轭梯度法的收敛速度大为加快,由一些迭代法的矩阵分裂A=M -N,可选取M 为这里的B,例如对称超松弛迭代(SSOR),强隐式迭代(SIP)等,这类方法常称为广义共轭梯度法或预条件共轭梯度法,它也可用于解代数特征值问题。
  
  

参考书目
   冯康等编:《数值计算方法》,国防工业出版社,北京,1978。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条