1) stress rupture equati$
持久方程
2) secular equation
久期方程
1.
Then the corresponding secular equation can be solved more easily and the polarization vector can be determined.
由化简后D(k)的矩阵形式,能较为容易地解久期方程及确定偏振矢量。
2.
According to the degenerate perturbation theory and the secular equation of n=1,2,3 energy level,Stark s effect of n=4 energy level for hydrogen atom is studied and calculated and the stark s effect for hydrogen atom at(n)th energy level have also been deduced.
根据简并情况下的微扰理论和n=1,2,3对应能级的久期方程,推出n=4状态下氢原子的斯塔克效应中的久期方程,并算出该状态下氢原子在电场中的能级分裂情况。
3.
According to the perturbation theory, a distribution law of matrix element in secular equation is discovered in degenerate state and wave function property of the hydrogen atom.
根据简并态微扰理论和氢原子波函数的性质,得到久期方程中微扰矩阵元的分布规律。
3) Durable Press Cycle /Permanent
持久压力程序
5) stress rupture
持久
1.
Microstructure evolution and fractographs of DZ621 nickel-base superalloy during stress rupture test in 1100℃/60MPa was investigated by SEM.
本文用扫描电镜研究了DZ621镍基高温合金在1100℃/60MPa持久过程中的组织变化及其断裂后的断口形貌。
2.
The stress rupture equation with high reliability is an important basis in the design of the mechanism working in high temperature environment.
高可靠度的蠕变持久方程是高温机械设备设计和寿命评估的重要依据 ,但是 ,根据现行方法得出的蠕变持久可靠性方程无法满足预定的置信度和可靠度的要求 ,导致其预测的蠕变持久强度和使用寿命过大 ,使高温机械在实际使用中偏于危险。
3.
Long tempering time may promote the precipitation of Laves phase during low-stress rupture.
研究了不同回火时间对T91钢625°C下持久性能及形变前后组织的影响。
6) lasting
[英]['lɑ:stɪŋ] [美]['læstɪŋ]
持久
1.
The author put forward a new kind of lasting foamed hair dye colorant -hair dye mousse, this new kind of colorant can dye, finalize, nurse and beautify hair.
综合染发剂美发和摩丝护发、定型的特点,针对目前一般染发剂的不足,研制开发出一种具有染发 及头发定型、护理多重功能的新型泡沫状持久性染发剂——染发摩丝,并对染发摩丝的主要原料、配方选择、 制备工艺等作了研究。
补充资料:泊松方程和拉普拉斯方程
势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
简史 1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
,
式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
。
在各分区的公共界面上,V满足边值关系
式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
静磁场的泊松方程和拉普拉斯方程 在SI制中,静磁场满足的方程为
式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
参考书目
郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
简史 1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
,
式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
。
在各分区的公共界面上,V满足边值关系
式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
静磁场的泊松方程和拉普拉斯方程 在SI制中,静磁场满足的方程为
式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
参考书目
郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条