说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 自适应数据处理
1)  adapting data processing
自适应数据处理
2)  Adaptive Processing of Data Structures (APoDS)
自适应处理数据结构
3)  adaptive processing
自适应处理
1.
Method of SAR image despeckling based on local adaptive processing;
一种基于局域自适应处理的SAR图像降斑算法
2.
In the environments of information war,using Agent technology as cutin point,the prototype of remote arming testing information adaptive processing center has been studied,the technology realizations and functional requests of each(Agent′s) of the prototype has also been analyzed.
在信息战争环境下,以Agent技术为切入点,研究了军事装备远程测试信息的自适应处理平台的原型;具体分析了原型中各功能Agent的技术实现及功能要求等;以VC++语言环境+Agent开发环境+数据库软件为信息处理中心开发环境,突出了本协同原型的模块化、开放性及智能性等特点。
3.
Firstly intellectual network filtration system work flow was studied,then systematic design of intellectual network information filtration system was given and each module was analyzed,finally three modules of network data processing,text data processing and adaptive processing were performed detailed study.
首先对智能网页过滤系统工作流程进行了研究,然后给出了智能网页信息过滤系统的系统设并对各个模块进行分析,最后对网络数据处理、文本数据处理和自适应处理三个模块进行详细研究。
4)  Data self-adapted
数据自适应
5)  adaptive data base manager
自适应数据库管理程序
6)  Adaptive multiplexing order
数据流数自适应
补充资料:测绘数据处理


测绘数据处理
survey data processing

  eehui shulu ehuli测绘数据处理(survey data processing)指工程勘察测童中所获得的大量相关数据进行统计、归纳、整理的过程。相关数据包括数字、文字、符号、曲线和图形等,如观测数据、检验数据、原始数据等,对这些数据进行归纳整理、检验分类、计算变换等的处理后,得出工程需要的数据、表册、图形等结果。 测绘数据处理分为一般计算、平差计算和计算机辅助成图。 一般计算包括在工程勘察测绘中,若干工序间各种数据按严格数学关系所进行的计算和变换工作。如大地坐标与高斯一克吕格平面直角坐标的相互转换,平面直角坐标与极坐标的相互转换,各种线路特征点的计算,单纯的统计假设检验,等等。它是分布在各项测绘工作中的一个子工序,特点是数据之间没有几何矛盾,不需进行几何平差。 平差计算为了消除平面或高程控制网中各观测值之间的几何矛盾(称为几何条件),按最小二乘法求定控制网中各几何元素(方向、距离、高差、方位、坐标、高程)的最佳估值和评定观测元素及其函数精度所进行的工作。 一个平差计算单元的数据,可分为起始数据(已知高精度的边长、方位、高程等)、观测数据(水平方向、边长、高差等)和待求数据(未知点的坐标、高程等)三类。起始数据和待求数据是非随机性数据。观测数据是随机性数据,含有误差,误差可分为系统误差和偶然误差两类。对某一个具体观测量,在相同条件下作一系列观测,系统误差表现为按一定规律变化或保持常数;而偶然误差在大小和符号上都表现出偶然性,但从大量偶然误差的总体看,它是服从正态分布的,即在一定的观测条件下:偶然误差的绝对值不会超过一定的限值;绝对值小的误差比绝对值大的误差出现的可能性大;绝对值相等的正误差和负误差出现的可能性相等,偶然误差的理论平均值为零。最小二乘法是针对偶然误差的处理方法。 在求定平面控制点的坐标或高程控制点的高程时,必须观测足以确定构网形状的那些量(称为必要观测量)。例如为了确定平面三角形三内角的大小必须观测其中任意两个角度,这两个角度就是必要观测量。但为了检核质量和提高精度还要观测另外一些量(称为多余观测量)。如前述的三角形观测了三个内角,就有一个量是多余观测量,观测量之间就会出现某些几何矛盾,例如平面三角形三内角的观测值总和不等于1800,要消除这些矛盾,即产生平差问题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条