1) Asperity density
微凸体密度
2) convex body/micro-convex body
凸体/微凸体
3) upper convex density
上凸密度
1.
By means of the upper convex density theorem, some conditions on the contractive ratios were given so that the Hausdorff measures can be exactly determined.
利用上凸密度定理,给出了相似压缩比的一个限制条件,使得对应的自相似集的Hausdorff测度能被精确确定。
2.
In this paper, we give an equivalent description of the upper convex density by means of the structure of the self-similar set.
根据自相似集的结构,找到了上凸密度的一个等价描述,根据这一等价描述构造了一个密度函数,并对该密度函数的计算问题进行讨论。
3.
For a self_similar set E satisfying OSC, a realization on the upper convex density is proved, that is, there is U with |U|>0 such that H s(E∩U)/|U| s=1, and as its application, a formula for the calculation of the Hausdorff meaure of E is obtained.
对于满足开集条件的自相似集E ,证明关于上凸密度的一个实现定理 ,即证明存在U ,满足 |U|>0 ,使得H2 (E∩U) |U|s =1。
4) micrangium density
微血管体积密度
5) Asperity
[英][æ'sperəti] [美][æ'spɛrətɪ]
微凸体
1.
Based on the assumptions that the particle is round or hexagonal and the asperity contour is round or cosinoidal,the rubbing temperature of the particle on the asperity is studied as well as its effect on the temperature and pressure properties of the liquid.
文章引入颗粒形态和表面粗糙度的影响,结合雷诺方程、粘温方程、颗粒和微凸体变形及能量方程等建立了颗粒和微凸体接触时的摩擦模型;探讨了颗粒形状分别为圆形和六边形,微凸体轮廓分别为余弦和圆弧时,颗粒和摩擦副的接触温度及其对流体的温度、压力分布的影响;研究结果表明,圆形颗粒的承载量比六边形颗粒的承载量大,与微凸体的接触温度也较大,而存在圆形颗粒的流体摩擦力以及总摩擦力较小。
2.
A model was developed which used a discretiza- tion method to obtain the asperity height and deformation mode.
通过STAR-1型表面轮廓仪对粗糙表面实际形貌的测定,分析得到了实际表面微凸体的高度分布和曲率分布,发现微凸体的高度分布并非高斯,而曲率分布则呈随机状态。
3.
The friction,friction coefficient etc of prescind from external asperity model and the single asperity model in plasticity forming were respectively researched by using finite element analysis software ADINA and Coulomb friction model and nonlocal friction model.
应用大型有限元软件ADINA,采用库仑摩擦模型和非局部摩擦模型,对不考虑表面微凸的模型和单个微凸体模型在塑性成形中的摩擦力、摩擦系数等进行研究。
6) multi asperity
多微凸体
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条