说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 中低Z材料
1)  low-and medium-Z material
中低Z材料
2)  high Z materials
低 Z 材料
3)  low Z materials
高 Z 材料
4)  low-capture material
(中子)低俘获材料
5)  low-dimension material
低维材料
1.
Phonon-glass electron-crystal(PGEC) and low-dimension materials are two kinds of potential thermoelectric materials.
声子玻璃电子晶体(PGEC)材料和低维材料是2种很有发展前景的热电材料。
2.
The coefficient of thermal expansion (CTE) is an important parameter attributing performances of materials However,there is no standard method to measure the CTE of low-dimension materials (one-dimensional wire stock and two-dimensional belt material) at present In this study,a measuring system is designed to solve the problem.
热膨胀系数是表征材料性能的一个重要参数 ,但目前对低维材料 (一维线材和二维带材 )的热膨胀系数尚无标准的测试方法。
6)  low-k material
低k材料
1.
The role and characterizations of low-k materials in IC circuits were introduced,and the interrelation between copper and low-k materials were analyzed to identify five materials including SiO2,SiOF,SiOCSP,SiOCNSP,SiOCSO as study objects.
阐述了低k材料在IC电路中的作用及其性质,以SiO2、SiOF、SiOCSP、SiOCNSP、Si-OCSO五种材料为研究对象,分析了低k材料与Cu互连工艺的相互联系和作用。
2.
Accurate characterizations of low-k materials are very important in semiconductor manufacturing process.
使用一种结合了Forouhi-Bloomer离散方程组和宽光谱分光光度法的新方法,对低k薄膜进行光学表征,得到薄膜的折射率n、消光系数k和膜厚d,并将结果与椭偏仪的测量进行比较,证明了使用F-B方程在半导体工艺中精确表征低k材料的能力和这种方法快速无损的优点。
补充资料:低功率激光频率转换材料


低功率激光频率转换材料
materials for low power laser frequency conversion

  低功率激光频率转换材料materials for lowpower laser frequeney eonversion对半导体激光器进行直接频率转换,或对半导体泵浦的钦激光器进行频率转换的材料。这类激光源多为连续激光。其功率在几十毫瓦到瓦级,发散角约20。一300;用其泵浦的钦激光发散度较小,但仍比一般固体、气体激光差。随着半导体激光器功率、寿命、模式特性的不断提高,应用上述激光频率转换材料可制作小型、长寿命的可见光激光源,用于高密度光盘存储、彩色显示等领域。 性能要求低功率激光频率转换的技术关键是提高转换效率。通常转换效率达10%才有实用意义。为此,对材料性能要求有高二次非线性系数、相位匹配条件和透过波段。高二次非线性系数在低转换效率情况下,转换效率与二次非线性系数成正比,因而希望有大的二次非线性系数的材料。已发现的MMNONS(4一甲氧基3一甲基4H一硝基二苯乙烯)、mNA(亚硝基苯胺)和MNA(二甲基一4硝基苯胺)等有机材料具有很高二次非线性系数,但它们短波吸收边已接近500 nm。具有短吸收边,又有高二次非线性系数的有机材料正在探索中。无机材料锐酸钾(KN)、视酸钡钠(BNN)、磷酸钦氧钾(KTP)、担酸铿(LT)晶体和视酸锉(LN)晶体二次非线性系数较高,而其短波吸收边大都在400 nm,是目前有希望应用的低功率激光频率转换的材料。 相位匹配条件是获得低功率激光有效频率转换的必要条件。发散度大的激光源,临界角度匹配方法造成的失配太大。比较而言,非临界角度匹配可获得更好效果,是体块材料低功率激光频率转换的一种有效技术,但对材料要求较苛刻。在大非线性系数材料中,只有KN晶体能在较窄的温度范围(约半度)内,对特定波长(一860~)能实现半导体激光直接倍频。体块材料相位匹配的另一可行方法是用准相位匹配技术。它的效果可与非临界相位匹配相当,同时可利用材料中一些很大的、由角度或温度匹配无法利用的非线性系数分量。 此外,也可利用波导结构来实现相位匹配。它可以提高基频功率密度,利用大的二次非线性系数,获得长的非线性互作用长度,因而可望获得高的转换效率。波导结构实现相位匹配的一个方法是利用波导模式色散。它要求基频和倍频导模的有效折射率相等,但难以获得较大的交叠积分,因而效果不太理想。利用切伦可夫辐射方式实现波导模相位匹配较为简便,其交叠积分也较大。目前已开发出一种把波导结构与准相位匹配相结合的方法,对半导体激光倍频已经获得高达3%的转换效率。 对半导体激光泵浦的钦激光倍频,已发展了一种利用可控反馈的谐振腔式相位匹配方法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条