说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 约束Jacobi矩阵
1)  constraint Jacobi matrix
约束Jacobi矩阵
2)  constraint matrix
约束矩阵
1.
Character of eigenvalues of constraint matrix;
智能天线约束矩阵特征值的性质
2.
To calculate the constraint propagation path,constraint matrix and constraint propagation matrix are formulated,then a new fast algorithm is presented to identify the constraint loop.
提出了几何约束矩阵和约束传播矩阵来表达和揭示约束传播的内在机制,并提出了一种闭环约束识别的新方法。
3.
A system of evaluation criteria, namely the expert authority vector, object vector, constraint vector, object matrix and constraint matrix is put forward for project appraisal in conceptual design.
首次提出并建立了用于产品设计方案评价的专家权向量、目标向量、约束向量、方案评价的目标矩阵和约束矩阵 。
3)  matrix restraint
矩阵约束
4)  Jacobi matrix
Jacobi矩阵
1.
On the fast algorithm and characteristic analysis of Jacobi matrix in the inversion of electromagnetic wave logs;
电磁波测井资料反演中Jacobi矩阵的快速算法及其特性分析
2.
The inverse problem of a generalized Jacobi matrix;
广义Jacobi矩阵的逆问题
3.
Necessary and Sufficient Condition for the Positive Definite of Lump Jacobi Matrix;
块Jacobi矩阵正定的充要条件
5)  jacobian matrix
Jacobi矩阵
1.
The analytical formula of the Jacobian matrix of local map is obtained and proven by geometrical method according to the continuity and transversality condition.
又根据连续性和横截性条件,通过几何方法推导并证明了局部映射的Jacobi矩阵的解析式。
2.
In this paper, an inverse eigenvalue problem of constructing a Jacobian matrix from its prescribed specially ordered defective eigenpairs and a principal subma-trix is considered.
引 言 设n阶Jacobi矩阵为J_n=a_i,b_i∈R,且b_i>0,i=1,2,…,n-1。
3.
This paper considers the following problem:How to construct a Jacobian matrix from its spectum and two eigenvalues and components of eigenvectors of its submatrix.
讨论由谱数据和主子阵的顺序特征对构造 Jacobi矩阵问题 ,给出了该问题有解的充分必要条件和求解的数值方
6)  Lump Jacobi Matrix
块Jacobi矩阵
1.
Necessary and Sufficient Condition for the Positive Definite of Lump Jacobi Matrix;
块Jacobi矩阵正定的充要条件
补充资料:Jacobi矩阵


Jacobi矩阵
Jacob! matrix

Jae曲i矩阵【面c曲ima州x;只K06“MaTpH”a」 具有实元素的方阵J=!}a,、},对}i一k}>l,有ai,*二0.若记ai,二a,(i=l·“4”)ai:+l=b,和a‘、!,,=c(i=1,二,n一l),则Jacobi矩阵有形式 }}“b .0…00日 ·{}e,a。b,…0 01} }!oe。a,一00}} }}0 00…e。_:a。】{Jacobi矩阵J的任何子式(~r)都是J的某些主子式与J的某些元素的积.J白eobi矩阵J是完全非负的(即它的所有子式是非负的).当且仅当它的所有主子式和所有元素b,和c,(i二1.一n一l)都是非负的.若bc,>0,i=1,…,n一1,则J的特征多项式(ch出飞』cteristic polyno~1)的根是实的且相异的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条