1)  output elasticity
产值弹性
2)  employment-output elasticity
就业产值弹性
1.
Collected the employment data of the tertiary industry in Xi an in recent 20 years, analyzed the employment situation by using the employment-output elasticity method, compared it with that of other countries, Beijing and Shanghai, and summatized the characteristics and trend of the employment of the tertiary industry in Xi an.
结合近20年来西安市第三产业就业情况的数据,分析了其吸纳劳动力的过程和现状;同时借助就业产值弹性等方法将三次产业之间和第三产业内部就业的结构情况与国外及北京、上海的情况进行了比较分析。
3)  supply-output elasticity
供给产值弹性
4)  output value
产值
1.
Current situation of construction enterprises——Analysis of high output value and low benefits;
铁路施工企业现状——高产值低效益分析
2.
Studies on the effect of nitrogen,potassium and magnesium on yield and output value of tobacco;
氮、钾、镁营养对烟草产量和产值的效应研究
3.
Effects of N, P and K on yield, average price and output values of flue-cured tobacco in Ankang of Shaanxi province;
安康烟区氮、磷、钾营养对烤烟产量、均价和产值的影响
5)  output
产值
1.
On the basis of the marine economy statistic data available,the paper adopts three mathematic models to carry out the forecast on main marine industries output value in China from 2007 to 2010.
根据可得的海洋经济统计数据,采用三种数学模型对2007年至2010年中国主要海洋产业的产值进行了预测,通过对历史数据拟合的比较,认为ARIMA模型拟合度较差,三次指数平滑法的拟合精度居中,灰色系统拟合误差最小。
2.
The results showed peanut pod yield and output value was not necessarily be similar with that of seed or oil or protein, and seed yield and output value was also not necessarily be similar with that of oil or protein too.
以 11个不同产量水平及品质标准的花生品种为材料 ,对其荚果、籽仁产量和油与蛋白质产量品质进行分析 ,结果表明 ,花生不同品种 (系 )荚果产量的高低 ,不一定与其籽仁或油、蛋白质产量和产值相一致 ,同样 ,籽仁产量与油、蛋白质产量和产值也未必吻合。
3.
the result indicate that 75mg/L of ABT sprays on 32/mu gets the best effect the increament of output and product is very apparent on variance analysis.
通过选择 3种不同栽培密度及 4种ABT增产灵浓度喷施试验结果表明 ,密度为 32株 /亩的柰李果园盛花期喷施 75mg/L的ABT增产灵对单位冠幅面积的产量及产值影响 ,经双因素方差分析达到极显著水
6)  production value
产值
1.
The effect of the chemical of uniconazole use in flue-cured tobacco in different seedtimes on its yield and production value was studied.
研究了烤烟不同播期使用烯效唑化控对产量、产值的影响。
2.
Straw overcast and FA can ameliorate agronomy character of tobacco and increase yield and production value of tobacco.
结果表明 ,秸杆覆盖、抗旱剂、秸秆覆盖 -抗旱剂具有明显保持土壤水分的作用 ,保持土壤水分的效果随秸杆覆盖、秸杆覆盖 -抗旱剂量的增加而增加 ;秸杆覆盖、抗旱剂、秸杆覆盖 -抗旱剂可明显改善烟株农艺性状 ,提高烟草产量和产值。
参考词条
补充资料:弹性和滞弹性
      弹性 一个物体在外力作用下改变其形状和大小,当外力卸除后物体又可回复到原始的形状和大小;这个特性称为弹性。弹性(英文elastic)一词源于希腊,十七世纪英国科学家玻意耳 (R.Boyle)赋予其科学意义并用到物理学中。弹性是各种工程材料的一项重要的物理性能(或列为力学性能),是材料科学的研究领域之一。固体的弹性理论是介于数学和物理学之间的一个分支学科,是近代力学的基础(见金属力学性能的表征)。
  
  胡克定律 固体弹性的近代理论是从英国胡克(R.Hooke)1660年的拉伸实验开始的,其结论是伸长与力成正比。设一圆柱体横截面积为A,两个端面上施加沿轴向z的均匀拉力F,单位面积上的拉力σz=F/A称为z方向的拉应力,圆柱体原始长度为l0,承受应力后的长度为l,则εz=(l-l0)/l0,称为z方向的应变,胡克定律的数学表达式为
  
σz=Eεz


  
或 εzz/E (1)

其中E 是比例常数。
  
  杨氏模量 英国物理学家杨 (T.Young)1807年用实验测定了一些材料的E值,所以现在把E称为杨氏模量或弹性模量。
  
  泊松比 承受拉伸应力的圆棒除产生轴向伸长外还伴随着径向收缩。设原始直径为r0,拉伸后直径为r,则径向应变εr=(r-r0)/r0与拉伸应力有下列关系
  
εr=-vσz/E (2)


  
  这个关系是英国泊松 (S.D.Poisson)1829年发现的,所以现在把比例常数 v称为泊松比。对于多数金属材料v为1/4~1/3左右。
  
  切变模量 在立方体的两个相对的表面施加切应力τ,立方体将发生纯剪切形变。其切应变以剪切角γ表示,则胡克定律可写为
  
τ=Gγ 或 γ=τ/G (3)

比例常数G 称为剪切弹性模量或切变模量或刚性模量。
  
  压缩模量 球状物体在均匀静水压力P作用下,体积被均匀压缩,体应变为ΔV/V,胡克定律可写为
  
p=K(ΔV/V) (4)

K称为体压缩模量或压缩系数。
  
  各种弹性参数间的关系 杨氏模量、切变模量、体压缩模量与泊松比等四个系数并不是独立的,而存在以下联系
  
G=E/2(1+v) (5)


  
K=E/3(1-2v) (6)

因而在这四个系数中只有两个是独立的。
  
  物质的弹性系数与原子间结合力有关,在单晶体中不同方向的原子结合力是不同的,因此弹性系数也是不相同的。精确测量这些弹性系数的取向关系及温度关系,与固体理论的计算进行比较,可以研究各种晶体结合键的规律。测量高压下的体压缩模量可以研究固体状态方程。
  
  弹性极限 应力正比于应变的比例关系(胡克定律)保持不变的最大应力称为比例极限。弹性极限是使材料开始发生范性形变的应力。工程上往往采用比例极限或屈服强度来代替弹性极限。
  
  弹性模量的测定 弹性模量表征各种材料抵抗变形的能力,是工程设计中十分重要的一个参数。工业上多是利用物理方法测定,如悬挂法、弯曲共振频率测量法、压电石英复合振子法及超声脉冲法等。
  
  滞弹性 在低于弹性极限的应力范围内,实际固体的应力和应变不是单值对应关系,往往有一个时间的滞后现象(见图),这种特性称为滞弹性,这个词是美国人曾讷 (C.Zener)1947年首先应用的。目前滞弹性已成为材料科学的一个研究领域。
  
  
  经典弹性理论是基于下列假定:①应变是对应于应力的均匀的平衡值,即可完全回复,不残留永久形变;②这种平衡值是瞬时达到的,即单值对应关系;③应力和应变是线性关系。用这些假定描述的固体称为理想弹性体。各种实际固体对这三条假定的偏离情况如下:后两种属于非弹性体。滞弹性体的应力与应变关系仍然是线性的,应力卸除后可以完全回复到原始形状和尺寸,只是要经过充分长的时间才能达到,即应变对应力有滞后现象,故称之为滞弹性。它与不可能完全回复的非弹性体有明显的区别。
  
  
  德国物理学家韦伯 (W.Weber)早在1825年研究电流计悬线时就发现,力偶卸除后悬线不是立即而是逐渐回到零点,他称之为弹性后效,现在又称之为力学后效。对于滞弹性固体在某时刻突然施加一个小于比例极限的应力,应变将以弛豫时间τσ逐渐达到平衡值,这种现象称为微蠕变,见图1。如果在某时刻突然产生并保持恒定应变,则应力将以弛豫时间τε逐渐达到平衡值,这种现象称为应力弛豫。上述三种现象是在静力条件下的滞弹性的表现。在周期应力作用下,滞弹性表现为应变落后于应力一个位相角φ。通常把位相角差φ作为材料滞弹性的量度,可证明
  
tgφ=Δω掦/[1+ω掦)2]式中掦=(τσε)1/2

为平均弛豫时间;Δ为弛豫强度(无量纲);ω为振动频率。
  
  

参考书目
   钱伟长、叶开源:《弹性力学》,科学出版社,北京,1956。
   C.Zener,Elasticity and Anelasticity of Metals,Chicago University Press,Chicago,1948.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。