说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 局部收敛性
1)  local convergence
局部收敛性
1.
The proof of the local convergence of the semi-implicit Euler method for a linear stochastic differential delay equation;
线性随机延迟微分方程半隐式Euler方法的局部收敛性证明
2.
Under the hypothesis that the first order derivative of a nonlinear operator f satisfied Hlder continuous condition around the zero of f(x),a local convergence theorem for this method was established in Banach spaces,and the local convergence with order 1+p was presented.
研究了一牛顿型迭代方法,即Newton-Steffensen型迭代方法的局部收敛性质。
3.
We prove the local convergence pro-perties of the algorithm assoicated with the general form of linesearch.
算法的思想是对非凸函数的近似Hesse矩阵进行修正,得到下降方向,并且保证拟牛顿条件成立,当步长采用线性搜索一般模型时,证明了该算法的局部收敛性
2)  semi-local convergence
半局部收敛性
1.
This dissertation mainly study the theoretic analysis of solving nonlinear equations f(x) = 0 in Banach space, especially on the local and semi-local convergenceof Newton s method, inexact Newton method and Newton-like method.
本文主要研究Banach空间内求解非线性方程组f(x)=0的理论分析问题,特别是对Newton法,不精确Newton法(inexact Newton method),Newton-like方法的局部收敛性和半局部收敛性进行了详细的讨论,并给出新的结果。
3)  semilocal convergence
半局部收敛性
1.
The semilocal convergence of the general quasi-Newton method for nonlinear complementarity problems is studied in this paper and the Mysovskii type convergence theorem is obtained.
本文研究了解非线性互补问题的一般拟牛顿法的半局部收敛性,得到了该方法的Mysovskii型收敛定理。
2.
The semilocal convergence properties of a variant of Chebyshev iteration method for nonlinear operator equations were studied under the hypothesis that the first derivative satisfied some mild differentiability conditions.
摘要:研究了在弱一阶可微条件下,一种变形的Chebyshev迭代法在求解非线性算子方程时的半局部收敛性
4)  local superlinear convergence
局部超线性收敛
5)  local quadratic convergence
局部二次收敛性
1.
At each iteration, only one system of linear equations needs to be solved, and its global linear convergence and local quadratic convergence are proved.
对P0矩阵线性互补问题提出了一个基于Chen Harker Kanzow Smale光滑函数的非内点连续算法,该算法在每次迭代时只需求解一个线性等式组,并证明了算法的全局线性收敛性和局部二次收敛性。
6)  Fast Local Convergence
快速局部收敛性
补充资料:局部收敛

解方程f(x)=0的一个迭代法产生的迭代序列是否收敛于f(x)=0的一个根p,通常与初始近似值选区范围有关。

若为了保证收敛性,必须选取初始值充分接近于所要求的根(解),则称它为局部收敛

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条