1) extreme value I
极值I型
2) I Shaped Maximum Value Distribution
I型极大值分布
3) I Shaped Minimum Value Distribution
I型极小值分布
4) Extreme value type I distribution
极值I型分布
1.
Procedure applying Pearson Type Three distribution (P-III) and Extreme value type I distribution (EV-I) to designed tide level calculation is studied in this paper to describe the testing methods of data coherence.
采用P-III型分布及极值I型分布,研究了沿海地区设计潮位计算方法。
5) extreme value type I probability distribution
极值I型概率分布
1.
According to the properties of extreme value type I probability distribution, the load values on the different distributions of variable load, which have the same probability of exceedance, were calculated in the paper, while the probability of exceedance of the characteristic value of variable load within the design reference period was taken as reference datum.
根据极值I型概率分布的性质 ,本文以楼面活荷载标准值在设计基准期内的超越概率为基准 ,计算了在不同设计使用年限楼面活荷载分布上具有相同超越概率的荷载值 ,讨论了其与结构重要性系数的关
补充资料:Weierstrass条件(对变分极值的)
Weierstrass条件(对变分极值的)
eierstrass conditions (for a variational extremun
与 ,(,)一丁:(:,、(:),、(。))过:, ,‘! L:R xR”xR”~R,在极值曲线x;、(t)上达到一个强局部极小值,其必要条件是不等式 、(r,x。(r),又。(r),亡))o对所有的t,t。蕊t毛t、和所有的省任C”都满足,其中‘·是Weierstrass澎函数(Weierstrass吕J一几mC-tion).这条件可借助于函数 n(t,x,p,u)=(p,u)一L(t,x,u)来表示(见n0HTp“「“H最大值原理(Pont月闷gm~-mum pnnciple)).Weierstrass条件(在极值曲线x。(t)上六)0)等价于函数n(r,x.,(t),尸。(r),u)当“=交.,(r)在u上达到极大值,其中夕。(t)=L、(t,x。,(t),又。(t)).这样,Weierstrass必要条件是floH-Tp。朋最大值原理的特殊情形. Weierstrass充分条件(Weierstrasss川币eientcon-山tion):为了泛函 叭 ,(,)一丁:(:,、(。),*(。))、。, r‘- L:R xR”xR”一,R在向量函数x.,(t)上达到一个强局部极小值,其充分条件是在曲线x。(t)的一个邻域G中存在一个向量值场斜率函数U(t,x)(测地斜率)(见H皿祀rt不变积分(Hilbert invariant integral)),使得 交。(t)=U(t,x。(t))和 产(t,x,U(t,x),七))0对所有(t,x)〔G和任何向量亡6R”成立.【补注]对在极值曲线的隅角的必要条件,亦见Wei-erstrass一Erd”.un隅角条件(W匕ierstrass一Erdrnanncomer conditions).weierstrass条件(对变分极值的)[Weierstrass cOI公i-tions(for a varia垃翻目翻drelll.ll:Be滋eP山TPaccayc-月OBH,,KcTpeMyMa」 经典变分法中对强极值的必要和(部分地)充分条件(见变分学(variational cakulus)).由K .We卜erstrass于1879年提出. 节几ierstrass必要条件(Weierstrass neeessary con-dition):为使泛函
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条