1) displacement matrix of rigid body
刚体位移矩阵
1.
The article concludes the relation between the number of insert points and the number of components in function replace of plane linkage by means of displacement matrix of rigid body.
应用刚体位移矩阵归纳出铰链连杆机构实现函数再现时构件数与插值点数的关系表达式。
2) large displacement stiffness matrix
大位移刚度矩阵
3) displacement matrix
位移矩阵
1.
Using the constraints of through settled point and alterable pole length and the application of displacement matrix method to the leader mechanism as a rigid-body guidance,this paper introduces the synthesis of carrying out the anticipative track and function generator and the synthesis method of function generator of alterable pole length-pendular hydraulic cylinder.
利用过定点约束及变杆长约束,介绍了用位移矩阵法进行导杆机构的刚体导引、实现预期轨迹和函数发生器综合及变杆长—摆动液压缸机构函数发生器的综合方法,并给出两个综合例子。
2.
To implement the guide of rigid body,the displacement matrix is used to synthesis of four joints planar linkage.
本文提出了一种用位移矩阵法精确求解实现四个或五个位置的刚体导引机构的综合 ;实现两边架杆四个或五个对应位置的函数机构的综合、以及其它一类连杆机构综合的方法。
3.
Based on the articulated beam in Bridge Project,the paper adds up the unit loading effect on the displacement matrix on other beams,and the matrix realizes the calculation methods of the computer program.
在《桥梁工程》关于铰接梁法的基础上,补充单位荷载作用在其他梁上的位移矩阵,并依此矩阵实现计算机程序的算法,同时可填补《桥梁工程》中有关铰接梁法的空白,促进学生的理解和运用。
4) shift matrix
移位矩阵
1.
This paper popularizes concept of T shift matrix,obtains the definition,function and eight properties of the generalized shift matrix.
推广了T移位矩阵的概念,给出了广义移位矩阵的定义、功能和它的五条性质。
5) position counterchange matrix
刚体位置变换矩阵
6) rigid displacement
刚体位移
1.
Aiming at the characteristics and problems on rib-hoisting of long span CFST arch bridge,the optimization theory was introduced to predict the cable tension and pre-camber value,and the rigid displacement caused by rotational displacement continuum was also considered.
方法采用最优化理论对扣索初张力和预抬高值进行预测求解,在安装第一个钢管拱肋节段时,把合拢段除外的其余所有梁段有限元模型一次生成,以考虑节段间转角连续引起的刚体位移,施工控制的目标为合拢前各钢管拱肋节段高程控制点的标高误差满足要求,采用一阶分析法对节段安装预抬高值进行正装迭代优化求解。
2.
However, the rigid displacement which is comprised in the process makes the analysis more complex.
索穹顶结构的成形分析是该体系的基础问题,由于包含刚体位移使得跟踪难度相当大。
3.
The basic unknown quantities in this method are the rigid displacements of the blockelements.
它以块体单元的刚体位移为基本未知量,根据块体在外力和缝面应力作用下的平衡条件、变形协调条件和缝面材料的本构关系,采用变分原理导出块体单元法的支配方程。
补充资料:矩阵位移法
按位移法的基本原理运用矩阵计算内力和位移的方法。是结构矩阵分析方法中的一种,其基本未知数是结点位移,由于矩阵位移法较矩阵力法更适宜编制通用的计算程序,因而得到了更为广泛的应用。
结构矩阵分析方法首先把结构离散成有限数目的单元,然后再合成为原结构,因而也属于有限元法。矩阵位移法常用的单元形式为一直杆。对于曲杆,如拱结构,虽然也可取曲杆作为单元,但单元分析较烦,为简化起见,可将它化成折线来处理,每一直线段作为一单元。当单元承受非结点荷载时,可用等效结点荷载代替。其方法是将单元间的分界结点作为固端求出固端反力,然后反其向作用在结点上。
根据结构变形后要满足几何方面的相容条件(变形条件),结点位移矩阵与杆端位移矩阵之间存在关系式
=
(1)式中表示对的变换矩阵。
杆端位移矩阵与杆端力矩阵之间的关系式为
=m
(2)式中m称为未装配结构的刚度矩阵,它等于各单元刚度矩阵(i) 作为子块的对角矩阵。 其元素可直接按结点单位位移引起的反力而求得。由于单元坐标并不一定是整体结构坐标,因而求得的单元刚度矩阵(i) 需通过坐标变换转化为整体坐标下的单元刚度矩阵。
根据结点作用力与汇交于该结点的杆端力保持平衡关系,可以得到杆端力与结点作用力的关系式为
=
(3)式中为杆端力矩阵 对结点作用力矩阵 的变换矩阵。根据虚功原理,可得=T。
根据上面三式,可以得到
=K
(4)
K=Tm
(5)式(5)K称为已装配结构的刚度矩阵或整体刚度矩阵。
通过式(5)获得总刚度矩阵K的方法称为刚度法。因为位移变换矩阵的阶数相当高,运算中须占大量的存贮单元,因而在组合整体刚度矩阵时,常采用直接把单元刚度矩阵的元素输送到K中的直接刚度法,该方法是将各单元中相同脚标的元素直接相加而组成整体刚度矩阵。在单元刚度矩阵中,对于近端结点刚度矩阵系数kjj,由于汇集于该结点j的所有单元都可作出贡献,因而在整体刚度矩阵中可有若干项相加,即,为汇集于j结点的所有单元。由于它不必通过式(5)进行计算,运算方便,因此其应用比刚度法更为广泛。
由于支座约束方向的结点位移通常为零或为已知值,因而可将全部结点位移分为两部分,一部分是不受支座约束的位移r,另一为沿支座约束方向的结点位移R。由此(4)式变成
展开上式得
(7)
(8)当R=0时(7)式变成:
r=Krr
(7′)式中Kr 为已装配结构相应不受支座约束的位移的刚度矩阵,实际上即为一般位移法基本方程中的系数矩阵K,该矩阵亦可直接按柔度矩阵求逆而得到。而r即为一般位移法基本方程的自由项矩阵(一般位移法中,K与在方程同一边,因而r与差一符号)。因而(7′)式即为位移法基本方程的矩阵表达式。
根据(7)或(7′)式即可求出r。再由(1)、(2)式即可求得杆端力,实际杆端力a应再叠加单元上非结点荷载引起的固端力f。第i单元的实际杆端力应为
a(i)=(i)(i)+f(i)
(9)
矩阵位移法计算杆端力的步骤为:①划分单元,求出等效结点荷载;②求单元刚度矩阵(i),并转换为整体坐标的单元刚度矩阵;③由(5)式或直接刚度法求出整体刚度矩阵K;④求出Kr和r;⑤由(7′)式求出结点位移r,再由(1)、(2)式求出杆端力,实际杆端力应再叠加f, 即由(9)式确定。
结构矩阵分析方法首先把结构离散成有限数目的单元,然后再合成为原结构,因而也属于有限元法。矩阵位移法常用的单元形式为一直杆。对于曲杆,如拱结构,虽然也可取曲杆作为单元,但单元分析较烦,为简化起见,可将它化成折线来处理,每一直线段作为一单元。当单元承受非结点荷载时,可用等效结点荷载代替。其方法是将单元间的分界结点作为固端求出固端反力,然后反其向作用在结点上。
根据结构变形后要满足几何方面的相容条件(变形条件),结点位移矩阵与杆端位移矩阵之间存在关系式
=
(1)式中表示对的变换矩阵。
杆端位移矩阵与杆端力矩阵之间的关系式为
=m
(2)式中m称为未装配结构的刚度矩阵,它等于各单元刚度矩阵(i) 作为子块的对角矩阵。 其元素可直接按结点单位位移引起的反力而求得。由于单元坐标并不一定是整体结构坐标,因而求得的单元刚度矩阵(i) 需通过坐标变换转化为整体坐标下的单元刚度矩阵。
根据结点作用力与汇交于该结点的杆端力保持平衡关系,可以得到杆端力与结点作用力的关系式为
=
(3)式中为杆端力矩阵 对结点作用力矩阵 的变换矩阵。根据虚功原理,可得=T。
根据上面三式,可以得到
=K
(4)
K=Tm
(5)式(5)K称为已装配结构的刚度矩阵或整体刚度矩阵。
通过式(5)获得总刚度矩阵K的方法称为刚度法。因为位移变换矩阵的阶数相当高,运算中须占大量的存贮单元,因而在组合整体刚度矩阵时,常采用直接把单元刚度矩阵的元素输送到K中的直接刚度法,该方法是将各单元中相同脚标的元素直接相加而组成整体刚度矩阵。在单元刚度矩阵中,对于近端结点刚度矩阵系数kjj,由于汇集于该结点j的所有单元都可作出贡献,因而在整体刚度矩阵中可有若干项相加,即,为汇集于j结点的所有单元。由于它不必通过式(5)进行计算,运算方便,因此其应用比刚度法更为广泛。
由于支座约束方向的结点位移通常为零或为已知值,因而可将全部结点位移分为两部分,一部分是不受支座约束的位移r,另一为沿支座约束方向的结点位移R。由此(4)式变成
展开上式得
(7)
(8)当R=0时(7)式变成:
r=Krr
(7′)式中Kr 为已装配结构相应不受支座约束的位移的刚度矩阵,实际上即为一般位移法基本方程中的系数矩阵K,该矩阵亦可直接按柔度矩阵求逆而得到。而r即为一般位移法基本方程的自由项矩阵(一般位移法中,K与在方程同一边,因而r与差一符号)。因而(7′)式即为位移法基本方程的矩阵表达式。
根据(7)或(7′)式即可求出r。再由(1)、(2)式即可求得杆端力,实际杆端力a应再叠加单元上非结点荷载引起的固端力f。第i单元的实际杆端力应为
a(i)=(i)(i)+f(i)
(9)
矩阵位移法计算杆端力的步骤为:①划分单元,求出等效结点荷载;②求单元刚度矩阵(i),并转换为整体坐标的单元刚度矩阵;③由(5)式或直接刚度法求出整体刚度矩阵K;④求出Kr和r;⑤由(7′)式求出结点位移r,再由(1)、(2)式求出杆端力,实际杆端力应再叠加f, 即由(9)式确定。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条