说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 刚塑性圆板
1)  rigid-plastic circular plate
刚塑性圆板
1.
Dynamic response analysis of rigid-plastic circular plate under underwater blast loading;
刚塑性圆板受水下爆炸载荷时的动力响应
2)  rigid circular plate
刚性圆板
1.
Considering the mixed boundary-value conditions,the dual integral equations of torsional vibrations of a rigid circular plate resting on transversely isotropic saturated soil were established.
通过解析方法研究了横观各向同性饱和半空间上刚性圆板在简谐扭转荷载作用下的振动问题。
2.
Then the dual integral equations of the venical vibration of a rigid circular plate on a fluid-saturated poroelastic half space are established according to the mixed boundary permeability condit.
用积分变换和积分方程研究多孔饱和半空间上刚性圆板的垂直振动问题。
3.
Based on the equivalent settlements of rigid circular plate,the continuity and smooth contact conditions between subsoil surface and rigid circular plate,the dual integral equation of the interaction stresses between the rigid circular plate and multi-layered soil,was deduced after introducing Hankel transform.
利用刚性圆板表面各点位移相等,并结合刚性圆板与地基表面的位移相容条件与光滑接触条件,经由Hankel变换,推导出了刚性圆板与分层地基表面接触应力的对偶积分方程;求解该对偶积分方程,再由多层地基应力与位移的传递矩阵解,并经Hankel逆变换,得到了多层地基上轴对称受荷刚性圆板问题的解。
3)  rigid disk
刚性圆板
1.
Torsional vibrations of a rigid disk on single-layered saturated soil;
单层饱和地基上刚性圆板的扭转振动
4)  rigid-plastic plate
刚塑性平板
5)  elasto-plastic bending of circular plates
圆板弹塑性弯曲
1.
In this paper, a method of spline integral equation to solve the elasto-plastic bending of circular plates is presented.
提出了圆板弹塑性弯曲的简单样条积分方程法。
6)  the rigidity of the plate
圆板刚度
补充资料:刚—塑性变分原理


刚—塑性变分原理
rigid-plastic variational principle

gang一suxing bianfen yuanli刚一塑性变分原理(rigid一plastiC variationalPrinciple)适于刚一塑性材料的能量泛函的极值理论。它是刚一塑性体变形力学极限分析的重要原理。在塑性加工力学中应用最多的是马尔科夫(A·A. MapKoB)变分原理和不完全广义变分原理。应用尚少的还有刚一塑性材料的完全广义变分原理和希尔(R.Hill)变分原理。 设刚一塑性体的体积为V,表面积为匀S又分凡和s户两部分,在s。上给定速度公‘,在s,上给定单位表面外力乡*。忽略质量力和惯性力以及不考虑存在速度间断面,并认为过程是在等温下进行的。对于塑性变形区,正确解应满足如下的方程和边界条件: (1)平衡方程今,,~O; (2)米泽斯(R.、。。M ises)屈月除件‘司,一粤减; -一一’·’‘了‘少3一’ (3)几何方程。,一合(V!,,+V,,,); (4)列维(M.Levy)一米泽斯本构关系成~ 压二通匕 ”“丫瓦可’ (5)体积不可压缩条件氏一已‘~o; (6)边界条件:在s户上。,n,=乡:,在s。上v:一云、; 马尔科夫变分原理在满足几何方程(3)、体积不可压缩条件(5)和速度边界条件v,一公的一切运动许可速度场计中使泛函 ’一作·万俪d一好、!一1)的神一。,并中取最小值的。,必为本问题的正确解。式(l)中右方第一项是塑性变形所耗功率;第二项是给定外力面上的外力功率。此原理作为塑性加工变形力学问题能量解法和有限元解法的基础。 塑性加工成形时考虑到工具和工件接触面上的单位摩擦力劝以及存在速度间断面SD,并认为其上的剪应力等于屈服剪应力k,此时式(1)可写成 。一褥哪佩dv+梦’“f’‘“十 彗““t‘dS‘2,式中幻f为工具与工件接触面的相对速度;如,为速度间断面上的速度间断量。 刚一塑性材料不完全广义变分原理应用马尔科夫变分原理时须预设定满足运动许可条件的速度场。此时几何方程和速度边界条件较易满足,而体积不可压缩条件较难满足。所以可把体积不可压缩条件乘以拉格朗日乘子又引入泛函式〔D中。这样就可把泛函式(l)的条件极值间题变成对新泛函求无约束条件的驻值问题。此即为不完全广义变分原理,其新泛涵表达式为一拜asI佩dV一[%26ividS十万‘,dv (3)刚一塑性材料不完全广义变分原理表明,在一切满足几何方程和速度边界条件的速度场中使泛函式(3)取驻值(a巾‘一0)的v‘为正确解。此泛函取驻值时的拉格朗日乘子*一粤。,一、。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条