1) kinetic theory of granular flow
颗粒动理学方法
1.
A multi-fluid computational fluid dynamics model was developed where the kinetic theory of granular flow forms the basis for the turbulence modelling in the solid phases considering the unequal granular temperature and the transfer and dissipation of momentum and turbtilent energy between gas and particle phases in the gas/solid flow systems.
基于气体分子运动理论和颗粒动理学方法,建立多组分颗粒气固两相流等温流动模型。
2.
The constitutive relations for solid phase were derived from kinetic theory of granular flow.
颗粒动理学方法模拟颗粒相湍动。
2) kinetic theory of granular flow
颗粒动理学
1.
Numerical analyses of effect of particle rotation on gas and particles flow behavior were performed using two-fluid flow model combining with the kinetic theory of granular flow.
本文运用基于颗粒动理学理论的欧拉-欧拉气固多相流模型,考虑颗粒自旋转流动对颗粒碰撞能量交换和耗散的影响,数值模拟流化床内气体颗粒两相流动特性。
2.
A multifluid model with closure relationships according to the kinetic theory of granular flow has been applied to study the motions of particles in the gas bubbling fluidized bed with the wide particle size distributions.
应用颗粒动理学,考虑气体与颗粒、颗粒组分以及组分内颗粒间的相互作用,建立宽筛分颗粒气固两相流双流体计算模型。
3.
The kinetic stress was modeled by using the kinetic theory of granular flow.
针对加压密相气力输送,对现有的颗粒静摩擦力模型进行适当修正,并将其与颗粒动理学理论相结合,建立了可以描述加压密相气力输送的气固湍流流动状况的多相流模型。
3) kinetic theory of granular flow
颗粒动理学理论
1.
The gas phase was modeled with k-ε turbulent model and the particle phase was modeled with kinetic theory of granular flow.
以欧拉多相流模型为基础,气相采用k-ε湍流模型,固相采用基于颗粒动理学理论封闭模型,引入传热、传质、煤热解、气化过程反应模型,建立了流化床煤气化过程的三维数理模型,该模型同时考虑了稠密气固流动和相内、相间的化学反应。
4) kinetic theory of granular flow
颗粒动力学理论
1.
An EulerianEulerian gassolid two-fluid model was proposed in combination with a large eddy simulation to model gas turbulence with the kinetic theory of granular flow to particle phase.
采用EulerianEulerian气固两相双流体模型、大涡模拟方法模拟气相湍流流动、颗粒动力学理论模拟颗粒相流动,数值模拟分解炉内气固两相流体的动力特性。
5) particle kinetic pressure
颗粒动理学压力
6) particl method
颗粒方法
补充资料:Власов动理学方程
Власов动理学方程
VTasov kinetic equation
B口acoB动理学方程口h脚v肠咖劝c阅四目阅;助ac。股以Ile仪,ec劝e yPaaHe欲e」 关于带电粒子的动理学方程,其中粒子之间的相互作用通过自洽电磁场予以描述.方程具有形式(见「11,【2】) 刁人 气巴于+v·脚dr人+ 日t二一rJ。 +二七[E+fv x Bll.它口d_f_=0.(l、 m,其中几(t,r,v)是粒子分布函数,而指标。指示粒子种类.自洽电磁场E,B根据M血”阶亚方程组(Max讹11闪ua石ons) 上。tB_。。丝十。.divE一二‘! 拜n一dr£‘It ro“一万丁,山v”一”j得出,其中。。和产。为真空电容率和真空磁导率,而体电荷密度p和体电流密度j则与粒子分布函数人通过 。(:.r卜y。_f£(:.,.,、、3 v.飞 JL‘,r)=令“·jJ·气‘,r,v)v“一vJ相联系.如果忽略粒子间相互作用或者假定多粒子分布函数是单粒子分布函数的乘积,则B服coB动理学方程可由给定种类“的全部粒子的分布函数的U倒M血方程(Liou喇泊e闰Uation)获得(见【3],[4」). A.A.B月acoB所提出的方程组(1),(2),(3),被广泛应用于等离子体物理学.以方程组(1),(2),(3)的线性化为基础的线性理论是得到最充分发展的理论.它被用于研究等离子体的小振荡和稳定性(t 51).拟线性理论,它使非线性效应的研究成为可能,正处于全力发展中.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条