说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 卫星轨道确定
1)  satellite orbit determination
卫星轨道确定
2)  Satellite autonomous orbit determination
卫星自主轨道确定
3)  Satellite orbit precision determination
卫星精密轨道确定
4)  spacecrafts orbit and attitude determination
卫星姿轨确定
5)  satellite orbit
卫星轨道
1.
The theoretical analysis and simulation result indicate that the satellite orbit and attitude changes have a great influence upon the space-borne SAR imaging.
理论分析与仿真结果表明卫星轨道近似与姿态变化对星载SAR成像有较大影响,应根据不同的成像精度提出不同的卫星控制精度。
2.
And a comparison with GPS system of Galileo system is studied in the following aspects: the satellite orbit deployment,the frequency and signal design,the pseudo-satellite technology and signal service.
从卫星轨道布置方式、信号与频率设计方法、伪卫星技术及信号服务等几个方面与GPS进行了对比研究。
3.
The experiment result with real measurement shows that the new method can be used in real time autonomous satellite orbit determination with high accuracy.
实测数据的计算结果表明,新的定轨方法可以实时自主地得出卫星轨道的位置,并能达到较高的定轨精度。
6)  satellite orbits
卫星轨道
1.
According to the limitation of the satellite orbits and spectrum resources,this paper puts forward some methods for making effective use of the satellite orbits and spectrum resources.
根据卫星轨道和频谱资源的有限性,提出了有效利用卫星轨道和频谱资源的几种方法。
补充资料:轨道确定
      利用观测数据确定航天器轨道的过程。航天器轨道确定的理论最初来自天体力学。早期天体力学中轨道确定的对象是自然天体。天体力学中小行星轨道的确定方法和原理基本上都可以用于航天器的轨道确定。与自然天体的轨道确定相比,航天器飞行中运动角速度大,测控网测量它的数据种类多、数量大,一般测控网都配置了高速度、大容量的计算机用于轨道测定,因此就形成了适应这些特点的航天器轨道确定理论和方法,以满足航天工程对轨道确定的高精度和实时性强的要求。
  
  步骤  航天器的轨道确定分为以下几个步骤:①数据的获取和预处理:航天测控站内用于测量航天器轨道的设备有雷达、多普勒测速设备、光学设备、激光测距仪等。这些设备对航天器进行跟踪观测,即可获得大量的用于航天器轨道计算的各种数据。这些数据必须加以预先处理,剔除野值(非正常测量的劣值)、修正偏差(如大气折射修正等)、整理和压缩数据。②初轨确定:应用少量数据确定粗略的轨道要素,作为轨道改进的初值。③轨道改进:应用充分多的观测数据,以轨道初值为基础得到精确的轨道要素。
  
  基本理论  轨道确定中运用的基本理论有轨道误差估算理论、航天器轨道运动理论和计算方法。①轨道误差估算理论:研究如何利用大量观测数据求解精确的航天器轨道。这是轨道改进中的核心问题。在实际中常用批量估算法(如加权的最小二乘法)和序贯估算法(如广义的卡尔曼滤波法)。②轨道运动理论:包括建立和求解航天器运动方程或摄动方程(见航天器轨道摄动)。对于有推力的主动段和返回地球或进入行星表面的轨道,一般采用数值计算方法(见火箭运动方程、返回轨道)。③计算方法:主要是求解轨道改进中的大型线性方程组等问题。
  
  精度分析  轨道确定中的核心问题是轨道精度,引起轨道确定误差的因素很多,可以分为三类:①测量数据的误差:主要决定于测量设备的精度、航天器信标频率稳定度、时间计量精度和大气折射修正的精度。②数学模型的精度:主要决定于飞行动力学模型和基本参数误差。飞行动力学模型包括各类摄动力的模型。基本参数误差包括测量站站址误差、摄动力描述中用的物理参数(如大气密度、阻力系数和地球引力场各种常数等)误差。③计算方法误差:包括轨道要素推算误差和线性方程组计算方法的误差。轨道误差是指航天器在空间的实际位置与推算出的位置之差,一般在几米到百米之间。
  
  应用轨道改进给出的精确轨道要素,可以计算观测预报,为轨道交会和对接提供航天器准确的运动规律;可用于航天器所摄地面图像的准确定位;用于地球静止卫星的准确定点所进行的轨道修正和保持;以及用于人造地球卫星、登月载人飞船等准确返回地面的计算和地球引力场模型、地球大气密度模型及其变化规律的研究等。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条