1) Fuzzy-combination algorithm
模糊综合算法
2) Fuzzy Bid Evaluating Algorithm
模糊综合评标算法
4) fuzzy comprehensive method
模糊综合法
1.
The Research on Evaluation of Venture Capital Projects Based on Fuzzy Comprehensive Method;
基于模糊综合法的创业投资项目评价研究
2.
The integrated assessment on urban greenland landscape ecology in Zhuzhou has been conducted by using fuzzy comprehensive method combined fuzzy comprehensive assessment with fuzzy clustering analysis.
文章利用模糊综合评判和模糊聚类分析于一体的模糊综合法对对株洲市城市绿地系统景观生态进行了综合评价。
3.
In this paper, a new fuzzy comprehensive method is put forward, combining fuzzy comprehensive evaluation with fuzzy clustering analysis.
本文利用融模糊综合评判和模糊聚类分析于一体的模糊综合法对城市绿地系统景观生态进行了综合评价。
5) fuzzy integrated method
综合模糊法
6) fuzziness-synthesizing operator
模糊性综合算子
1.
In view of the shortcomings of poor structure features and systematicness of current fuzziness metric,by combining fuzziness characteristic function with fuzziness-synthesizing operator,we establish F+S fuzziness metric model,and give tectonic models of the fuzziness characteristic function based on quasi-linear function and synthesizing operator model based on measure theory.
针对现行模糊性度量结构特征不明确以及系统性差等方面的不足,通过模糊特征函数与模糊性综合算子建立了一类融含现有度量方法的具有广泛可操作性的F+S模糊性度量模型;给出了基于拟线性函数的模糊特征函数的数量化构造模型和基于测度理论的综合算子构造模型,进而结合综合评判问题给出了F+S模糊性度量的一种应用。
补充资料:模糊综合评判
综合考虑事物多种因素,用模糊集理论来评定其优劣的方法。模糊综合评判广泛用于评定产品质量、环境质量、农业布局、天气预报、医疗诊断等方面。
设给定两个有限论域:U={u1,u2,...,un},V={v1,v2,..., vm}。这里 U是综合评判的因素所组成的集合,V代表评语所组成的集合。模糊综合评判是一个模糊变换问题:
X⋅R=Y式中"⋅ "表示合成运算,X是U上的模糊子集,评判结果 Y是V上的模糊子集,模糊关系R可看作一个模糊变换器(见图)。
若已知Y和R,求X;或已知X和Y,求R;就构成模糊综合评判的逆问题,需要求解模糊关系方程。模糊关系方程是法国学者E.桑杰斯于1976年根据医疗诊断的需要提出来的。这类问题相当于已知评判结果和模糊关系,求评判者对各种因素的权数分配问题。这种问题具有重大的实际意义,对发展专家系统起指导作用。
现举评判电视机的实例来说明模糊综合评判的方法。U={u1,u2,u3},V={v1,v2,v3,v4}。这里u1代表图像,u2代表音响,u3代表价格;v1表示很好,v2表示较好,v3表示可以,v4表示不好。设聘请专家或顾客进行评判。例如对于图像,有50%的人认为很好,40%的人认为较好,10%的人认为可以,没有人认为不好。全部结果记作:
对于图像:Vu1=(0.5,0.4,0.1,0)
对于音响:Vu2=(0.4,0.3,0.2,0.1)
对于价格:Vu3=(0,0.1,0.3,0.6)
这样就构成一个模糊矩阵:
设一类顾客在购买电视机时主要是要求图像清晰,价格便宜,音响稍差则不要紧,则此类顾客对电视机三个因素的权数分配
X =[0.5 0.2 0.3]对电视机的评判结果为这是根据最大最小运算得到的,还需作归一化处理。因为0.5+0.4+0.3+0.3=1.5,用1.5除各项得到 [0.330.27 0.20 0.20]。模糊综合评判的结果,认为图像、音响、价格都很好的占比重最大,达33%。
设给定两个有限论域:U={u1,u2,...,un},V={v1,v2,..., vm}。这里 U是综合评判的因素所组成的集合,V代表评语所组成的集合。模糊综合评判是一个模糊变换问题:
X⋅R=Y式中"⋅ "表示合成运算,X是U上的模糊子集,评判结果 Y是V上的模糊子集,模糊关系R可看作一个模糊变换器(见图)。
若已知Y和R,求X;或已知X和Y,求R;就构成模糊综合评判的逆问题,需要求解模糊关系方程。模糊关系方程是法国学者E.桑杰斯于1976年根据医疗诊断的需要提出来的。这类问题相当于已知评判结果和模糊关系,求评判者对各种因素的权数分配问题。这种问题具有重大的实际意义,对发展专家系统起指导作用。
现举评判电视机的实例来说明模糊综合评判的方法。U={u1,u2,u3},V={v1,v2,v3,v4}。这里u1代表图像,u2代表音响,u3代表价格;v1表示很好,v2表示较好,v3表示可以,v4表示不好。设聘请专家或顾客进行评判。例如对于图像,有50%的人认为很好,40%的人认为较好,10%的人认为可以,没有人认为不好。全部结果记作:
对于图像:Vu1=(0.5,0.4,0.1,0)
对于音响:Vu2=(0.4,0.3,0.2,0.1)
对于价格:Vu3=(0,0.1,0.3,0.6)
这样就构成一个模糊矩阵:
设一类顾客在购买电视机时主要是要求图像清晰,价格便宜,音响稍差则不要紧,则此类顾客对电视机三个因素的权数分配
X =[0.5 0.2 0.3]对电视机的评判结果为这是根据最大最小运算得到的,还需作归一化处理。因为0.5+0.4+0.3+0.3=1.5,用1.5除各项得到 [0.330.27 0.20 0.20]。模糊综合评判的结果,认为图像、音响、价格都很好的占比重最大,达33%。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条