1) quantum algebra
量子代数
1.
The bases and maximal vectors in Verma module of quantum algebra for type A_2;
A_2型量子代数Verma模的典范基和极大向量
2.
Two different rotational formulae for description of normal deformed and superdeformed nuclei are submitted by the definition of the softness and by two different representations of quantum algebra.
利用量子代数两种不同的表示和原子核软度系数的定义 ,给出了描述正常形变核和超形变核两个不同的转动谱公式 。
3.
In this paper, it is shown that, for the finitely-dimensional irreducible representations of SLq(3)the representation space labelled by the Elliott-like bases |(λμ)∈J M>is com-posed of many J-subspaces, and every J-subspace is an IR-space of the subalgebraSUq(2)of the quantum algebra SLq(3).
本文表明,用类Elliott基|(λμ)∈JM>标记的SLq(3)有限维不可约表示(λμ)的表示空间,可以分为许多J子空间,而每个J子空间都是量子代数SLq(3)的子代数SUq(2)的空间。
2) Quantum algebras
量子代数
1.
Giving (?)(u) as YBE s solrtion, theories about quantum groups which include Yan-gian and quantum algebras can be derived from RTT relation.
当杨一巴克斯特方程的解R(u)给定时,由RTT关系即可建立量子群理论,它包括Yangian和量子代数。
2.
U is the quantum algebras over A associated to (a_(ij))_(i,j)~n, U is a A -Hopf algebra .
U 是A 上的相伴于对称Cartan矩阵(a_(ij))_(i,j)~n的量子代数,则U 是A -Hopf代数。
3) weak quantum algebra
弱量子代数
1.
Center and isomorphisms of weak quantum algebras;
弱量子代数的中心和同构条件
2.
Weak Hopf algebra structure and modules corresponding to the weak quantum algebra wU_q(G);
弱量子代数wU_q(G)上的弱Hopf代数结构和模
3.
Weak Hopf algebra structure of weak quantum algebra wU_q(■);
弱量子代数wU_p(■)的弱Hopf代数结构
4) quantum superalgebra
量子超代数
1.
In terms of the q-deformed boson realization the q-deformed boson representations of the quantum superalgebra OSPq(1,2)are obtained on the q-deformed Fock space.
本文依据量子超代数OSPq(1,2)的q变形玻色实现,在q变形Fock空间上得到了此代数的q玻色表示。
5) quantum Lie algebras
量子李代数
6) Hopf Algebra,Algebraic Group and Qua ntum Group
Hopf代数与代数群量子群
补充资料:单量子阱(见量子阱)
单量子阱(见量子阱)
single quantum well
单且子阱sillgle quantum well见量子阱。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条