1) potential flow
位流
1.
The free vortices behind triangle obstacles are investigated based on the potential flow theory in this paper.
用不可压位流理论证明了三角形突起物后存在自由旋涡的驻定态位置 ,且在该处稳定的自由旋涡是中性稳定态。
2.
A high-order panel method is presented for calculating of potential flow around multi-element airfoils in this paper.
本文给出了一种求解多段翼型位流的高阶面元法。
2) potential flow
势流位流
3) potential flow
位流;势流
4) Bit Stream
比特流,位流
5) streaming potential
流动电位
1.
Experimental method of the streaming potential of charge modified microporous membrane;
荷电微孔滤膜流动电位测量方法的研究
2.
Research on streaming potential of polysulfone hollow fiber ultrafiltration membrane
聚砜中空纤维超滤膜的流动电位研究
3.
Measurements of Zeta potential on filter media using the streaming potential method
流动电位法测定滤料表面的Zeta电位
补充资料:位势流
它的流场是一个标量函数嗞的梯度。采用直角坐标系x、y、z,把流速U的三个分量用μ、υ、来表示,则它们都是x、y、z和时间t的函数。在位势流中,U=墷嗞,即
,
式中嗞称做速度势。
数学分析有一命题:旋度在一个区域中为零同这个区域中流动有速度势是相互等价的。因此,位势流又叫无旋流。从18世纪开始,人们用位势流的方法成功地反映了涟波、潮汐波和声波的规律。19世纪中期又弄清无粘流体的理论可以允许一部分流体是有旋的(如涡丝、涡环),而包围这部分有旋流的却可以是位势流。并且,如果知道了有旋流部分的旋度分布,就可以算出位势流部分的速度场。
位势流在流体力学中发展得早而成熟,从欧拉就开始研究,这是因为相应的数学问题比较简单。把三个未知函数 μ、υ、用一个标量函数嗞来代替,如果密度ρ均匀不变,又不考虑粘性,而采用欧拉方程计算,则连续方程:,就简化成
或
。
这样,方程就变成了线性的、只有一个未知量嗞的二阶常系数椭圆型方程──拉普拉斯方程。这比原来要处理的非线性方程组,从数学上说简单得多。此外,在定常的情形下,还可以把欧拉方程组沿流线积分而得到伯努利方程。这样,一旦求出嗞就可根据伯努利方程求出压力分布p(x,y,z,t)。
究竟在什么条件下会出现位势流,这是由开尔文(W.汤姆孙)在 1869年证明了环量守恒定理后才比较清楚了,例如无粘气体从静止状态而形成绝热运动,或是密度不变的无粘流体在重力作用下运动,则在流体内部(不涉及固体壁面或接触间断之类的边界)画任意一些封闭"流体线"(指永远是由同样的流体质点所组成的线,它和流体质点一起运动),沿这些线的环量起初都是零。如果以后流场保持连续,且欧拉方程成立,那么流体线都移动、变形,环量仍为零。因此,这些流体线内部没有旋度,都是位势流。可见,位势流的出现会是广泛的。还要说明一下,不能盲目地假设流动一定都是位势流。流体线不能穿过流场发生不连续的面(如切向间断),否则环量守恒和上述论证都不成立。切向间断和边界层是两种产生涡旋的原因(见涡旋)都不能用位势流理论来描述。
参考书目
H. Lamb, Hydrodynamics, 6th ed., Cambridge University Press, Cambridge, Eng.,1932.
,
式中嗞称做速度势。
数学分析有一命题:旋度在一个区域中为零同这个区域中流动有速度势是相互等价的。因此,位势流又叫无旋流。从18世纪开始,人们用位势流的方法成功地反映了涟波、潮汐波和声波的规律。19世纪中期又弄清无粘流体的理论可以允许一部分流体是有旋的(如涡丝、涡环),而包围这部分有旋流的却可以是位势流。并且,如果知道了有旋流部分的旋度分布,就可以算出位势流部分的速度场。
位势流在流体力学中发展得早而成熟,从欧拉就开始研究,这是因为相应的数学问题比较简单。把三个未知函数 μ、υ、用一个标量函数嗞来代替,如果密度ρ均匀不变,又不考虑粘性,而采用欧拉方程计算,则连续方程:,就简化成
或
。
这样,方程就变成了线性的、只有一个未知量嗞的二阶常系数椭圆型方程──拉普拉斯方程。这比原来要处理的非线性方程组,从数学上说简单得多。此外,在定常的情形下,还可以把欧拉方程组沿流线积分而得到伯努利方程。这样,一旦求出嗞就可根据伯努利方程求出压力分布p(x,y,z,t)。
究竟在什么条件下会出现位势流,这是由开尔文(W.汤姆孙)在 1869年证明了环量守恒定理后才比较清楚了,例如无粘气体从静止状态而形成绝热运动,或是密度不变的无粘流体在重力作用下运动,则在流体内部(不涉及固体壁面或接触间断之类的边界)画任意一些封闭"流体线"(指永远是由同样的流体质点所组成的线,它和流体质点一起运动),沿这些线的环量起初都是零。如果以后流场保持连续,且欧拉方程成立,那么流体线都移动、变形,环量仍为零。因此,这些流体线内部没有旋度,都是位势流。可见,位势流的出现会是广泛的。还要说明一下,不能盲目地假设流动一定都是位势流。流体线不能穿过流场发生不连续的面(如切向间断),否则环量守恒和上述论证都不成立。切向间断和边界层是两种产生涡旋的原因(见涡旋)都不能用位势流理论来描述。
参考书目
H. Lamb, Hydrodynamics, 6th ed., Cambridge University Press, Cambridge, Eng.,1932.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条