1) Largrangian coordinate
拉格朗日坐标系
2) Lagrangian coordinate
拉格朗日坐标
1.
The new method is based on the following assumptions: Eulerian coordinate is used in the longitudinal direction of the strip,whereas Lagrangian coordinates are employed in the width and thickness directions;Time is taken as an independent variable.
其主要内容包括:在轧制件纵向上用欧拉坐标,厚度和宽度方向上用拉格朗日坐标,时间变量是独立的,计算轧制件厚度和宽度方向上的实际位移时采用的流线形积分改用沿纵向的欧拉坐标一元积分。
2.
In this paper the shallow water equations in the Lagrangian coordinates were derived and the numerical solutions were found out for shallow water problem with moving boundary by using a 2 order Godunov scheme.
移动边界问题是水力计算中难点之一 ,本文用拉格朗日坐标系来描述浅水方程 ,并用二阶Godunov算法求解有移动边界的浅水问题的数值解。
3) Lagrangian moving coordinate
拉格朗日动坐标
4) quasi-coordinate Lagrange method
拟坐标拉格朗日法
5) arbitrary Lagrangian Eulerian and body-fitted coordinate
任意拉格朗日欧拉坐标法
6) Lagrangian systems
拉格朗日系统
1.
Direct varitional method is employed to prove the existence of odd periodic solutions for Lagrangian systems with Bi even subquadratic or bounded potentials.
利用直接变分法,证明了一类具有双偶的次二次或有界位势的拉格朗日系统的奇性周期解的存在性。
补充资料:第二类拉格朗日方程
见拉格朗日方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条