1) sine furface
正弦曲面
2) sine-ruled surface
正弦直纹曲面
3) spherical sinusoid
球面正弦曲线
4) sinusoidal buckling
正弦屈曲
5) sinusoid
[英]['sainəsɔid] [美]['saɪnə,sɔɪd]
正弦曲线
1.
Illustrating ellipse and sinusoid curves,the coordinate conversion and programming in the process of using macro command were stated.
探讨了常见非圆弧曲线的加工方法,并以椭圆及正弦曲线为例,叙述了在使用宏指令加工过程中坐标值的数据转换及程序编制。
2.
In this paper we discuss the representation of integral circle,cycloid and sinusoid on a period by uniform C-B-splines of degree 3.
本文给出了整圆、一个周期上的摆线及正弦曲线的三次均匀C-B样条表示。
3.
A digital frequency synthesizer without ROM look up table is presented,a piecewise linear interpolation scheme is used to approximate a sinusoid function.
该方法使用具有分段连续的线性分段来近似正弦函数曲线的第一象限部分,根据正弦曲线的对称性,构成完整的正弦曲线。
6) Sine curve
正弦曲线
1.
Considering the sine curve as the primary equation of hydraulic geometry andsolving togather with continunity eqution of water flowing and other relative equations, depth, breadth and slope of sinuous channel have been deduced.
选用正弦曲线的河床形态作为原生的河相关系式,与水流连续性等方程联解,导出蜿蜒型河道的河相关系式。
2.
A real-time fast interpolation algorithm for hdical and sine curves based on the principleof time-slicing method is proposed.
提出了一种基于时间分割法的带前加减速控制的螺旋线及正弦曲线的快速插补算法,并分析了其插补精度;该算法具有速度快、精度高等优点。
3.
This paper discusses a method of synthesizing free curve and sine curve.
本文提出自由曲线和正弦曲线合成的方法,通过调整正弦曲线的幅值和频率,改变合成曲线的形状,这种方法易于实现和分解,并可用于描述随机形状。
补充资料:单侧曲面与双侧曲面
单侧曲面与双侧曲面
one - sided and two - sided surfaces
单侧曲面与双侧曲面(帐.幼山月.砚加。一浦山吐,叮肠。污;o月.oc”POHHNe.刀”yc功PollH“e no.epxltocT.) 以不同的方式放置于外围空间中的两类曲面(单侧放置(one一sid留泌ition)和双侧放置(t场U.si山刘p沈i石on)).例如,柱面是双侧曲面,而M施如带(M冬biuss州P)是单侧曲面.这两类曲面之间的特征区别是,柱面的边界由两条曲线组成,而M6bi留带的边界是单独的一条曲线.在封闭曲面中,球面(sPhere)和环面(torus)是双侧的,而X】曲1曲面(Kleins班鱼沈)是单侧的.作为双侧放置和单侧放置的例子,可以引用圆周在M6blus带中的嵌人.这样,圆周“(见图)是单侧曲线,而圆周刀是双侧曲线(一般说来,任何无定向道路(d留丽enii飞path)单侧地落在曲面中). 霍重)薰黔 更确切地说,单侧曲面和双侧曲面是以不同的方式嵌人在(维数高过1的)外围空间中的两类流形.双侧性和单侧性与可定向性和不可定向性(见定向(。山nta石on))有关,但是它们不是曲面的内在性质,而依赖于外围空间.例如,存在可定向的双侧曲面:梦C=夕,护C=R,;不可定向的双侧曲面:’R尸ZxOCR PZ xs,;可定向的单侧曲面:尹二S,xs,c= RPZx夕;不可定向的单侧曲面:R尸,CR尸(这里,梦是球面,产是环面,R尸“是射影平面,RP3是射影空间,夕是R尸上迷失方向的路径). 在可定向空间(例如,R”)中一个超曲面是可定向的,当且仅当它是双侧的. 假定一个法向量沿着浸人在某个空间中的光滑曲面上一条闭曲线移动,并保持它是曲面的法向量.如果不管如何选择闭曲线,当回到出发点时法向量的指向与它原来的指向总是一致的,则称该曲面是双侧的(t认。一sid记);反之,则称它为单侧的(o优一51山沮).更一般地,曲面n是双侧放置的当且仅当它的法丛(nonl以1 bundk)是平凡的(在这个丛里存在一个非零截面).反之,单侧曲面的法丛是非平凡的:在n上存在一条曲线使得法丛在它上面的限制是一条M6bius常. 空间N”中每一个(超)曲面M”一’在局部上都把尸分成两部分,即任意一点x任M月一’C=N“有一个邻域U cN,使得U由两个分支U’和U“组成,而U门M“一’属于它们的公共边界.在另一方面,M”一’在N”中的充分小邻域(如果M在N中是封闭的)或者是一个分支,或者有两个分支,其边界包含M在内.在第一种情形,(超)曲面M”一’也称为单侧的(one-51山沮),在第二种情形,称为双侧的(腼、51山过).因而,虽然曲面在局部上是双侧的,但是在大范围上它可能是单侧的.反过来,双侧曲面未必分隔它在空间中的邻域. 对于落在N“+’中的双侧曲面M”,任意一条封闭曲线:与M”在N”十’中的相交指数(同调论中的)(运如加叨。n in(七x(in holnofogy))满足方程(:,M”)二Olllod 2.但是,如果M”是单侧的,则对某条曲线:日丫+’(:,M·)笋0.这个事实(与法向量的移动及邻域的分隔一起)也能取作单侧性和双侧性的定义.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条