1) the exact analytic expression
精确解析式
1.
Proceeding from the identically equal of Γ\|function and incomplete Γ\|function, this paper calculate the exact analytic expression of Γ(α) and lnΓ(α), and calculate the exact analytic expression of new algorithm for Γ\|distribution function based on the reference[1].
从Γ函数与不完全Γ函数的恒等关系出发, 导出了Γ(α) 与lnΓ(α) 的精确解析式, 并在文[1] 的基础上导出Γ分布函数新算法的精确解析式。
2) exact analytic solutions
精确解析解
1.
Based on the idea of balancing-act method and the computerized symbolic computation, some exact analytic solutions of the CDGSK equation have been obtained.
利用均衡作用法,借助于计算机符号运算,求出了该方程的精确解析解。
2.
The exact analytic solutions for the variable-coefficient Hirota-Satsuna system of coupled KdV equations are obtained by the expansion of Tanh method with the aid of the computerized symbolic computation.
利用扩展的Tanh函数法,借助于计算机符号计算,得到变系数Hirota-Satsuma(HS)耦合KdV方程的精确解析解,其中既有三角函数解又有双曲函数解。
3) exact analytic solution
精确解析解
1.
The solution we obtained presents generality,because it contains some exact analytic solutions that are given in other papers.
这些解更具有一般性,它包含着已有文献给出的精确解析解。
4) exact analysis solution
精确解析解
1.
New exact analysis solutions of the Kupershmidt equation;
Kupershmidt方程新的精确解析解
2.
By means of the dressing operator method,the exact analysis solutions of KP difference/?differential equations have been obtained.
借助穿衣算子法 ,得到了KP差分 -微分方程组的精确解析解 。
5) exact analytical solution
精确解析解
1.
Study of exact analytical solutions of Boussinesq equation;
Boussinesq方程精确解析解研究
2.
As a result,the exact analytical solution to the KdV-Bur.
利用两种试探函数法,即先作变换后选取试探函数的方法和直接选取试探函数的方法,将一个难于求解的非线性偏微分方程化为一组易于求解的非线性代数方程,然后用待定系数法确定相应的常数,最后简洁地求得了KdV-Burgers方程的精确解析解,两种方法所求得的解完全相同,且与已有文献所得结果一致。
3.
The beams of circular cross-section with parabolic radius variation and the beams of rectangular cross-section with parabolic height variation power functional width variation are two special examples and their exact analytical solutions of transverse free vibration were found accordingly.
求得了其横向自由振动的精确解析解。
6) exact analytic method
精确解析法
1.
In this paper, by means of the exact analytic method ̄[1] the general solution for dynamic response of nonhomogeneous beam with variable cross section is obtained under arbitrary resonant load and boundary conditions.
本文利用精确解析法 ̄[1]给出非均匀变截面梁在任意谐振荷载和边界条件下的动力响应的一般解。
补充资料:解析表达式
解析表达式
analytic expression
解核达式【anal外icexP~ion;一~肠哪旧-戮e皿el,公式(formula) 为了得到函数值而对自变量的值和常数按一定顺序进行的运算的总合.对于每个含一个自变量x的、具有不超过可数过间断点的函数,都存在一个仅含从自变量x和常数出发、至多进行可数次的三种运算(加法、乘法和按自然数取极限)的解析表达式A(x),例如 的_Zn+l 云,.、_x-… SlnX二)‘一‘r— 二二、l乙月十l奋! n=0、.,‘,二,.如果至少存在一个描述给定函数的解析表达式,则存在无穷多个这样的表达式.例如,恒等于零的函数可以表示为下列级数: 0一暑丝兴且十”从任何解析表达式A(x),总可得到与其恒等的另一个解析表达式:,(二)十,(:)}至主二止立竺且+11, L征~In:}其中B(x)是任意解析表达式.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条