1) differential identity
微分恒等式
1.
In this paper, Unicity, differential identity and asymptotic property of quadratic padé Approximation of the exponential function are given; one mistake of is corrected.
本文给出了指数函数的二次 Padé逼近的唯一性 ,微分恒等式与渐近式 ,并改正了文 [3 ]中的一个错误 。
2) differential identity expression
微分恒等式
1.
In this paper, a group of differential identity expressions of the quadratic Padé approximation′s polynomials of the exponential function is firstly testified , then .
该文首先证明指数函数的二次 Padé逼近多项式的一组微分恒等式 ,然后由这一组微分恒等式得到指数函数的二次 Padé逼近多项式的递推公式 ,利用所给出的递推公式 ,就能够由指数函数的 (m ,n,r)型二次 Padé逼近多项式计算出它的 (m + 1,n + 1,r+ 1)型二次 Padé逼近多项式。
3) differentio-integral identity
微分-积分恒等式
1.
In this paper, we establish a differentio-integral identity, and generalize some classical Sturm theorems by using it.
建立了一个微分-积分恒等式,并利用它推广了一些经典的Sturm定理。
4) integral identity
积分恒等式
1.
In this paper,the high accurate integral identity is studied for the Lagrane finite element of two-point boundary value problem of elliptic differential equation.
本文研究了椭圆方程两点边值问题Lagrange有限元的高精度积分恒等式,通过插值后处理技术,得到了如下的整体超收敛的结果:‖∏2m2huh-u‖l≤Chm+2-l‖u‖m+1,l=0,1。
2.
A unique solvability of the source term solution is obtained by applying integral identity methods.
应用积分恒等式方法,证明了源项解的唯一存在性 。
3.
The high accuracy integral identity is studied for the cubic Hermite finite element of two-point boundary value problem of fourth-order equations.
研究了四阶方程两点边值问题三次Hermite有限元的高精度积分恒等式。
5) integral identities
积分恒等式
1.
By means of integral identities and boundary estimates techniques,the optional error estimation is presented for hyperbolic equation.
运用具有各向异性特征的非协调元(修正的旋转Q1元)对二阶双曲方程进行了Galerkin逼近,通过采用积分恒等式和边界估计技巧,得到了相应的最优误差估计。
2.
Meanwhile, the superclose result coincides with the conventional methods is obtained by means of integral identities techniques.
利用具有各向异性特征的双线性元和双二次元对Sobolev方程进行Galerkin逼近,摆脱了对网格剖分满足正则性条件的要求,同时,利用积分恒等式技巧,得到了与传统方法相同的超逼近结果。
3.
By means of integral identities and boundary estimates techniques,the optional error estimation is presented for hyperbolic equation.
运用具有各向异性特征的非协调元(修正的旋转元Q1)对二阶双曲方程进行了Galerkin逼近,通过采用积分恒等式和边界估计技巧,得到了相应的最优误差估计。
补充资料:储蓄-投资恒等式
储蓄-投资恒等式:基于国民收入会计角度反映经济活动事后的储蓄与投资恒等关系。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条