1) expansion mapping
扩张映射
1.
In this paper, several new fixed point theorems for expansion mappings and the common fixed point theorem for a pair of mappings in compact metric space are introduced.
本文得到几个新的扩张映射的不动点定理和紧距离空间中映射对的公共不动点定
2.
The fixed point theorems for expansion mappings and the common fixed point theorem for a pair of mappings are given in 2 metric spaces under the condition of weakening mappings continuance.
在2—距离空间中减弱映射的连续性条件下,给出了扩张映射的不动点定理及扩张映射对的公共不动点定理。
2) Expanding map
扩张映射
1.
In this paper, we study the relationship between the positive expansiveness of a kind of self-maps on a circle and the expansiveness of their inverse limits, and obtain that, for every surjective continuous map f,the inverse limit of f is expansive if and only if f is topologically conjugate to an expanding map.
本文研究了圆周上一类自映射f的正向可扩性与其道极限的可扩性间的联系,得出圆周上的连续满射f的逆极限可扩等价于f拓扑共轭于扩张映射。
3) nonexpansive mapping
非扩张映射
1.
Approximations for the common fixed points of finite nonexpansive mappings in the uniformly convex Banach spaces;
一致凸Banach空间中有限个非扩张映射的公共不动点的逼近
2.
Iteration process of nonexpansive mappings;
非扩张映射不动点带误差的迭代过程
3.
Convergence of sequence of nonexpansive mapping;
非扩张映射迭代序列及其收敛性
4) Nonexpansive mappings
非扩张映射
1.
Viscosity approximation of fixed point for nonexpansive mappings
非扩张映射不动点的粘性逼近方法
2.
An iterative scheme with errors involving three nonexpansive mappings is considered.
讨论了3个非扩张映射的带误差的迭代格式,在一致凸Banach空间中,在比紧性弱的条件下,通过这种格式,强弱收敛到3个非扩张映射的公共不动点。
3.
In particular, fixed point problems of asymptotically nonexpansive mappings in product space are discussed, the convergence problems of the new interative sequence for nonexpansive mappings under specific conditions are discussed in this thesis.
特别讨论了积空间中渐近非扩张映射的不动点问题,研究了某些非扩张映射迭代序列在特定条件下的收敛性问题。
5) ψ-expansive mapping
ψ-扩张映射
6) φ-A expansive mapping
φ-A扩张映射
1.
Common fixed point theorem for a class of φ-A expansive mappings;
一类φ-A扩张映射的公共不动点定理
补充资料:扩张映射
扩张映射
expanding mapping
【补注]Y系统在西方文献中通常称为AHocoB系统(A阳sovs岁ton).扩张映射【e%卿喇吨n.跳那嗯;paeT,roaa啊ee oTo6Pa-袱eH“e」 一个由闭流形M到它自身上的可微映射f,在其作用下所有切向量的长度(在某种,因而在任何R记-n必n刀度量的意义下)依指数速率增长,即存在常数C>0与义>1,使对一切X任TM与一切n>0, {ITI,(X){I)C又nt}X!1.此概念也有不带可微性条件的变形,它能概括许多以前研究过的一维情形的例子作为特例.扩张映射的性质类似于y系统(Y一s那tem)的性质,并且部分性质甚至还简单些(例如,C,类的扩张映射恒有作为正密度用局部坐标定义的有限不变测度).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条