1) generalized diagonally dominant matrices
广义对角占优阵
1.
An equivalence condition of the generalized diagonally dominant matrices;
广义对角占优阵的一个等价条件
2.
A judgement standard of the generalized diagonally dominant matrices;
广义对角占优阵的判别准则
3.
Meantime,a judgement method for the complex square matrix to be a generalized diagonally dominant matrices is given too.
给出了复方阵为广义对角占优阵的一个充要条件,同时也给出了复方阵为广义对角占优阵的判别方法。
2) generalized diagonally dominant matrix
广义对角占优阵
1.
A necessary condition and a sufficient condition for a matrix which is a generalized diagonally dominant matrix are given.
给出了复方阵为广义对角占优阵的一个必要条件和一个充分条件,同时给出了判断广义对角占优阵的较简单的方法。
3) generalized dominant matrices
广义对角占优矩阵
1.
Some new necessary and sufficient conditions for the complex square matrix to be a generalized dominant matrices are given in the paper.
给出了复方阵为广义对角占优矩阵新的判定准则,同时也得到了复方阵为非广义对角占优矩阵的判定方 法。
4) generalized strictly diagonally dominant matrix
广义严格对角占优矩阵
1.
α-diagonally dominant matrices andcriteria for generalized strictly diagonally dominant matrix;
α-对角占优矩阵与广义严格对角占优矩阵的判定
2.
A is a generalized strictly diagonally dominant matrix,both Jacobi and Gauss-Seidel iterative methods of Equation Ax=b converge.
对广义严格对角占优矩阵A给出了解线性方程组Ax=b的Jacobi迭代法及Gauss-Seidel迭代法均收敛的证明。
3.
We present some simple practical criteria for verifying whether a locally diagonally dominant matrix is a generalized strictly diagonally dominant matrix.
引进局部对角占优矩阵的概念,得到这类矩阵的一些性质,给出了局部对角占优矩阵为广义严格对角占优矩阵的简单而实用的判定准则。
5) generalized sub-diagonally dominant matrices
广义次对角占优矩阵
1.
The concept of local double diagonally matrix is introduced in this paper,and three sufficient conditions of the generalized sub-diagonally dominant matrices are obtained.
提出局部次对角占优矩阵的概念,得到了广义次对角占优矩阵的二个充分条件。
6) generalized strictly diagonally dominant matrices
广义严格对角占优矩阵
1.
A simple and practicable method of judging generalized strictly diagonally dominant matrices and nonsingular M-matrices is introduced.
广义严格对角占优矩阵与非奇 M矩阵是非常重要的两类矩阵。
2.
In this paper, we adopt the definition of generalized Nekrasov matrices and give two equivalent conditions for generalized strictly diagonally dominant matrices, obtain some new practical criteria for generalized strictly diagonally dominant matrices, which include and extend some relevant results.
广义严格对角占优矩阵在数值分析和矩阵理论的研究中非常重要。
3.
<Abstrcat>By using the properties of Ostrowski diagonally dominant matrix,some sufficient conditions for weak α-double diagonally dominant matrix to be generalized strictly diagonally dominant matrices and comparative matrices to be nonsingular M-matrices.
利用Ostrowski对角占优矩阵的性质,给出了弱α连对角占优矩阵为广义严格对角占优矩阵及其比较阵为非奇异M矩阵的若干充分条件,作为应用给出了相应的特征值分布定理,拓广了广义严格对角占优矩阵的判定准则。
补充资料:占优策略均衡
占优策略:
无论其他参与者采取什么策略,某参与者的唯一的最优策略就是他的占优策略。
占优策略均衡:
由博弈中的所有参与者的占优策略组合所构成的均衡就是占优策略均衡。
无论其他参与者采取什么策略,某参与者的唯一的最优策略就是他的占优策略。
占优策略均衡:
由博弈中的所有参与者的占优策略组合所构成的均衡就是占优策略均衡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条