1) τ cofficient
τ系数
1.
Through the study of the numbers of permutations and maxim which have the same reverse order , we get the recurring formula,with which we can extend the Kendall τ cofficient table which is frequently applied in mathematical statistics in the condition of any natural number.
由此将数理统计中常用的肯达尔 τ系数临界值表从 n=1 0扩展到 n为任意自然数的情形 ,并特别给出了 n=2 0情形下的 τ系数临界值表 ,扩大了 τ系数进行独立性检验的实用范
2) correlation coefficient τ
相关系数τ
1.
In the case of futures portfolio, dynamic matrix of correlation coefficient τ could be computed to weigh the correlation of the price changes of the different futures.
对期货组合,我们通过引入相关系数τ计算其动态迁移相关系数矩阵,由此来衡量不同期货合约之间价格相关性的变动,从而站在风险对冲的角度建立模型对期货组合的风险水平进行评估,确定其保证金水平。
3) Kendall
Kendall秩相关系数τ
4) τ-Lie algebra
τ李代数
5) Ramanujan τ function
Ramanujan-τ函数
1.
Used the method of zero density to discuss an estimation for an exponential sum connected with Ramanujan τ function in short intervals.
利用零点密度估计方法讨论了短区间中与 Ramanujan-τ函数有关的一个指数和估计 。
6) time constant τ
时间常数τ
1.
The paper,aiming at the problem of temperature detection during the industrial production, introduces the cause of dynamic error produced in the process of temperature measuring with the thermocouple transducer and analyses the effect of the time constant τ on error margin of the measured temperature in detail.
针对工业生产中温度检测问题 ,介绍了热电偶传感器在测温过程中 ,产生动态误差的原因 ,详细分析了时间常数τ对测温误差的影响 ,对指导工业生产具有一定的应用价
补充资料:τ系数
见社会统计学。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条