说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 闭轨线
1)  closed orbit
闭轨线
1.
The nonexistence of closed orbit in real plain is proved.
应用非线性系统的定性理论方法,对一类军事竞争系统进行了定性分析,研究了系统平衡点的性态,证明了系统在全平面不存在闭轨线
2.
This paper obtains some sufficient conditions on the non-existence of the closed orbits for several kinds of the nonlinear differential systems.
本文研究几类非线性微分方程不存在闭轨线的条件,所得结果可用于判别方程■+f_1(x)■+ f_2(x)■+g(x)=0和■+f(x,■)■+g(x)=0闭轨线的不存在性。
2)  closed streamline
闭合轨线
3)  fantastic closed trajectory
奇闭轨线
4)  closed orbit
闭轨
1.
Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system.
目的研究二阶Birkhoff自治系统的奇点、闭轨、稳定流形与不稳定流形,方法用常1微分方程的定性方法进行研究,结果与结论给出二阶Birkhoff自治系统的奇点判据、闭轨判据、双曲平衡点判据,得到与其相关的平衡稳定性、稳定流形与不稳定流形等。
2.
In the paper,we have studied the existence of closed orbits for autonomous pla-narsyslem:Some sufficient conditions are established to ensure that the system has at least one closed otbit.
研究一般平面自治系统x=P(x,y),y=Q(x,y)的闭轨的存在性,获得了保证此系统存在闭轨的几组充分条件。
3.
In this paper,we have studied the existence of closed orbits for the generalized Lienard system: x=φ(y), y=-φ(y)f(x)-g(x).
本文研究广义Lienard系统x=(y),y=—(y),f(x)—g(z)闭轨的存在性问题。
5)  close orbit
闭轨
1.
Under the conditions of close orbit an analytical expression resulting in close trajectory is given.
选取一个含非线性负电容的三阶自治电路,对其状态方程所描述的向量场的特征空间进行分析与计算,根据闭轨产生的条件,求出了闭轨存在的解析式。
2.
In this paper,the authors studied a mulgimolecules model:(a>0,p≥1,q≥2)(E)The authors obtained the following result:There exists an a<a≤ao,such that if a<(x,y) ∈ G or a>a_o then(E) has no close orbit;if<a≤a,then(E)has stable limit cycle.
本文研究了一类多分子反应模型:主要结果是:存在闭轨,当,Ρ/α-1<a<a时,(E)有传稳定的极限环,其中本文部分结果优于文〔2,3〕。
6)  closed orbits
闭轨
1.
Shall discuss some geometric properties of homogeneous vector fields of degree three in R 3,especially the geometric structure of the tangent vector field Q T( x ) on the sphere S 2 induced by such vector fields,namely the geometric distribution of singularities,trajectories(including closed orbits,limit cycles)and heteroclinic loops.
讨论了 R3 中三次齐次向量场 Q( x)的一些几何性质 ,特别是这样的向量场诱导出的切向量场 QT( x)在球面 S2上的几何结构 ,如奇点、轨线 (包括闭轨、极限环 )、异宿环的几何分布情
2.
In this paper,the authors continue to study the Liapunov bifurcation problem on three dimensional dynamical system on the basis of paper[2],the restrictions on the vector fields are relaxed;the method that judge the existence of periodic solutions generated from the closed orbits is given.
放宽了文〔2〕中关于向量场函数的限制,相应地给出从空间闭轨族扰动产生孤立周期解的判定方法。
补充资料:轨线计算
分子式:
CAS号:

性质:当反应体系势能确定后,势能面轨线上的各代表点可用经典力学和量子力学方法计算,然后用统计的方法对这些轨线加以处理,以获得各种微观与宏观的结果。目前大致有三类计算方法:(1)经典散射理论。即用代表点在势能面上的运动来模拟化学反应,在目前已有大型计算机的情况下,结果具有相当好的近似性;(2)半经典的量子散射理论。能保持经典轨线法的优点又考虑量子效应,是一种量子力学与经典力学相结合的半经验处理方法;(3)量子散射理论。通过严格的或近似的求解薛定谔方程。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条