1) altering voice speed
语音变速
1.
An algorithm for altering voice speed and its real-time realization based on TMS320C5402;
此外,提出了一个TMS320C5402和AT89C51双处理机系统的硬件设计方案,将语音变速算法用TMS320C5402和人 机交互用单片机AT89C51实现。
2) speed-changed speech
变速语音
3) variable rate speech coding
变速率语音编码
1.
The Research and Design of Variable Rate Speech Coding Based on DSP;
基于DSP的变速率语音编码的研究与设计
2.
With the booming of the third generation mobile telecommunication, the study has been focused on the variable rate speech coding technology recent years.
随着第三代移动通信技术的迅速发展,变速率语音编码技术已成为近年来研究的热点。
3.
Voice activity detection(VAD) is the key technology of variable rate speech coding to distinguish the speech sentences from non-speeches.
语音信号的激活检测(voice activity detection,VAD)是变速率语音编码的关键技术,用来检测通信时是否有语音片存在。
4) variable-rate speech algorithm
变速率语音算法
5) English speech sound changes
语音音变
1.
Study on the influence of English speech sound changes on listening comprehension;
浅析英语语音音变对听力理解的影响
6) variable-rate speech coder
变速率语音编码器
1.
Algorithm of low variable-rate speech coder based on MELP
基于MELP的变速率语音编码器算法
补充资料:AC变速驱动控制比较及选择
最通用的电机控制方法,AC变速驱动(VSD),通常有三种控制方式:开环控制、无速度传感器矢量控制和通量矢量控制,提供感应电机的越来越精密的要求(以及永磁同步电机)。
开环AC驱动采用最为简单的电机控制方法,即所谓的V/Hz控制方法,也是"数量"控制以使之区别于矢量控制方法,V/Hz作用于开环,没有正式的反馈装置。但是,电流和电压有电流限制和转差估算。这个低成本的方法一般用于速度控制,提供相关的低速和转矩响应。它能提供无转矩控制或低速时的高转矩。
V/Hz占有美国AC驱动类型的最高百分比。控制工程杂志曾统计,89%的参与者使用AC驱动方式(无传感器矢量占41%,闭环矢量控制占33%)。V/Hz控制特别适合动力泵、风机和其他连续过程领域。一个显著的优点是它可简单地控制几个电机。
在其他的VSD中,还包括磁通矢量控制(FVC) 。在全FVC控制中,实际的反馈设备(大部分为编码器)用于电机的定位和速度信息。最复杂的电机模型用于控制算法。FVC允许真正的转矩模式运行,采用分离的速度和转矩回路。一个自适应控制器增加了更高的动态转矩调节。可解决电机温度改变和其他控制扰动,形成优化的输出。全FVC可在低速获得高转矩(即使是0 rpm),在全程速度中提供线性参数。
无传感器驱动(Sensorless vector control ,SVC),无需编码 开环矢量控制,可以获得改进的低速运行特性,变负载下的速度调节能力也得到改善。
开环AC驱动采用最为简单的电机控制方法,即所谓的V/Hz控制方法,也是"数量"控制以使之区别于矢量控制方法,V/Hz作用于开环,没有正式的反馈装置。但是,电流和电压有电流限制和转差估算。这个低成本的方法一般用于速度控制,提供相关的低速和转矩响应。它能提供无转矩控制或低速时的高转矩。
V/Hz占有美国AC驱动类型的最高百分比。控制工程杂志曾统计,89%的参与者使用AC驱动方式(无传感器矢量占41%,闭环矢量控制占33%)。V/Hz控制特别适合动力泵、风机和其他连续过程领域。一个显著的优点是它可简单地控制几个电机。
在其他的VSD中,还包括磁通矢量控制(FVC) 。在全FVC控制中,实际的反馈设备(大部分为编码器)用于电机的定位和速度信息。最复杂的电机模型用于控制算法。FVC允许真正的转矩模式运行,采用分离的速度和转矩回路。一个自适应控制器增加了更高的动态转矩调节。可解决电机温度改变和其他控制扰动,形成优化的输出。全FVC可在低速获得高转矩(即使是0 rpm),在全程速度中提供线性参数。
无传感器驱动(Sensorless vector control ,SVC),无需编码 开环矢量控制,可以获得改进的低速运行特性,变负载下的速度调节能力也得到改善。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条