说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 降维特征值分解
1)  dimension-reduced EVD
降维特征值分解
2)  eigenvalue decomposition
特征值分解
1.
A new TDE method based on adaptive eigenvalue decomposition in presence of impulsive noises;
脉冲噪声下基于自适应特征值分解的时延估计新方法
2.
In the blind source separation when there is noise present in the data,the methods of estimating the number of sources are mainly as follows: eigenvalue decomposition,the Akaike information criterion(AIC),the minimum description lengt.
证明了无观测噪声时,利用观察信号数据矩阵的零空间估计法确定信号源数目的方法,等价于通过计算观察信号数据矩阵的秩来确定信号源数目;阐述了在信号源盲分离中有观测噪声时,国内外信号源数目估计的主要方法:特征值分解、Akaike信息准则(AIC)、最小描述长度(MDL)及Minka Bayesian准则,通过理论分析与实验结果对这些方法进行比较,得出各方法的适用范围以及影响估计的主要参数,为信号源数目的正确获取提供参考。
3.
Based on the correctional signal auto-relation matrix eigenvalue decomposition, this m.
提出基于特征空间求根法进行频率的精确估计,对修正的信号自相关矩阵进行特征值分解,利用信号子空间和噪声子空间的正交性构造多项式,进行多项时求根,得到单位圆上的根进行频率估计,在此基础上通过三角回归法,解一超定方程组得到相应的振幅和相位。
3)  EVD
特征值分解
1.
In this paper, a novel algorithm for high resolution DOA estimation is proposed, which not only skips sources number estimation and EVD, but also behaves satisfactorily with a few snapshot, it may be viewed as a combination of merit of conventional Capon and MUSIC method.
该文提出一种超分辨的DOA估计算法,此算法不需要预判信源个数和进行特征值分解,同时在时变环境中,针对快拍数较少的情况下,依然保持较高的角度分辨能力,可以被认为是综合了Capon法和MUSIC法的优点。
2.
It is an important direction, which use EVD (Eigen Value Decomposition) or SVD (Singular Value Decomposition) in modern spectral estimation.
采用特征值分解(Eign Value Decomposition简称EVD)或者奇异值分解(Singular Value Decomposition简称SVD)进行功率谱估计,仍然是现代功率谱估计研究和应用的重要方向之一。
3.
High-resolution spectrum estimation was achieved, which not only avoided number of signal estimation and EVD, but also could still maintain a relatively high angle resolution at lower SNR.
该算法继承了求根MUSIC算法优越的性能,直接利用阵列接收数据的协方差矩阵,无须预判信源个数和进行特征值分解,实现高分辨谱估计,同时在信噪比较小时,仍能保持较高的角度分辨力。
4)  SVD
特征值分解
5)  Singular Value Decomposition(SVD) /Eigen Value Decomposition(EVD)
奇异值分解/特征值分解
6)  feature reduction
特征降维
1.
A text feature reduction method based on similar combination
一种基于相似融合的文本特征降维方法
2.
Firstly,we analyse the primary feature reduction means and their characteristic in the text classification.
讨论了文本分类中特征降维的主要方法及其特点,分析了基于散度差准则的特征降维的原理和方法,在避开求逆矩阵问题的同时,通过对文本特征进行选择对文本特征集进行了第一次压缩,借助于加权散度差原理对特征集进行了二次抽取,在最低限度减少信息损失的前提下实现了特征维数的大幅度降低。
3.
Firstly,analyzed the primary feature reduction means and their characteristic in text classification.
首先讨论了文本分类中特征降维的主要方法及其特点,然后分析了一种基于散度差的准则用于特征降维的原理和方法,从理论上对该方法的相关步骤进行了数学论证。
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条