1) genus distribution of embedding
嵌入亏格分布
2) genus distribution
亏格分布
1.
At the basis of joint trees introduced by Yanpei Liu, by using the method which sorts the embedding surfaces of these graphs,the genus distribution of the orientable embeddings for a type of new graphs are provided.
在刘彦佩提出的联树法的基础上,通过分类一类新图类的可定向嵌入曲面求出了这类图类的可定向嵌入的亏格分布。
2.
In this paper,expressions of the genus distribution for certain sets of surfaces are provided.
本文求出了一些曲面集的亏格分布的显式表达式。
3.
In this paper,we obtain the relation of associate surfaces between dipoles and fan graphs by using the joint tree model of a graph embedding introduced by Yanpei Liu,then deduce the genus distribution and total genus distribution of fan graphs from those of dipoles which had been counted,and obtain the numbers of embeddings of fan graph on the nonorientable surfaces of genus 1-4 in .
本文,利用刘彦佩提出的嵌入的联树模型,得到了双极图与扇图的关联曲面之间的关系,进而由已知结论的双极图的亏格分布和完全亏格分布推导出扇图的亏格分布和完全亏格分布,并给出了扇图在亏格为1-4的不可定向曲面上嵌入的个数的显式。
4) total genus distribution
完全亏格分布
1.
In this paper,we obtain the relation of associate surfaces between dipoles and fan graphs by using the joint tree model of a graph embedding introduced by Yanpei Liu,then deduce the genus distribution and total genus distribution of fan graphs from those of dipoles which had been counted,and obtain the numbers of embeddings of fan graph on the nonorientable surfaces of genus 1-4 in .
本文,利用刘彦佩提出的嵌入的联树模型,得到了双极图与扇图的关联曲面之间的关系,进而由已知结论的双极图的亏格分布和完全亏格分布推导出扇图的亏格分布和完全亏格分布,并给出了扇图在亏格为1-4的不可定向曲面上嵌入的个数的显式。
2.
In this paper,We obtain the total genus distributions for a class of 4-regular graphs which is a popularization of graphs posed by Yang and Liu(Acta Math Sinica,2007,50(5):1191-1200).
本文推广了Yang和Liu提出的图类,得到了一类新的四正则图,并得出了此类四正则图的完全亏格分布。
6) embedded distributed system
嵌入分布系统
补充资料:曲线的亏格
曲线的亏格
genus of a curve
曲线的亏格【g日.启ofaa口,e;p呱盆”加‘】 域k上一维代数簇(习罗braic姐山ty)的一个数值不变量.光滑完全代数曲线(目酬加ic curve)X的亏格等于X上正则微分1形式(见微分形式(d迁rerential场nn))空间的维数.代数曲线X的亏格按定义等于双有理同构于X的完全代数曲线的亏格.对任一整数g>O,都存在亏格g的代数曲线.代数闭域上亏格g=O的代数曲线是有理曲线(份由耐cu丁,e),即双有理同构于射影直线P!的曲线.亏格g=1的曲线即椭圆曲线(e帅ticc~),双有理同构于尸中三次光滑曲线.亏格g>1的代数曲线分为两类:超椭圆曲线和非超椭圆曲线.对非超椭圆曲线X,由完全光滑曲线的典范类凡所定义的有理映射码从l:X~尸,一’是一个同构嵌入;而对超椭回曲线(h男咒r.e正PtiCc也、e)X,映射码幻J:X~尸g一’是有理曲线的一个双叶渡叠.妈划(X)它在2g十2个点上分歧. 如果X是一个m次平面射影曲线,则 g一塑上卫处二互一d, 2这里d是一个衡量X偏离光滑性的非负整数.如果X仅有通常二重点,则d等于X的奇点个数.对于空间中曲线X的亏格g,有如下的估计: f竺户2,若m为偶数, _}一-不一.’们”’/刁’门~’ g诀气俪一l、(m一3)一止“ }竺生二巴里‘竺,若。为奇数, 仁4这里m是X在尸3中的次数. 当灭是复数域C时,代数曲线X就是R妇1.1.曲面(Rj日比以朋s班角Ce),这时亏格g的光滑复曲线同胚于具有g个环柄的球面.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条