1) inertial fractal set
惯性分形集
1.
The inertial fractal sets of dissipative Hamiltonian amplitude equation;
耗散Hamiltonian振幅方程的惯性分形集
2.
And by introducing an equivalent norm,the squeezing property of operator and Lipszchize continuity are proved,thereby the existence of inertial fractal set in H_1 space is testified.
研究有阻尼 ,没有 Marangoni效应的色散 KDV- KSV方程 ,通过引入等价范数 ,证明算子的强挤压性及L ipszchize连续性 ,从而证明了惯性分形集在 H1 空间的存在性。
3.
In this paper, using the method of Dai Zhengde of al we obtain the existence of the inertial fractal set for Newto-Boussinesq equation.
利用戴正德等人的方法获得了二维Newton-Boussinesq方程惯性分形集的存在。
2) itertial fractal
惯性分形
3) inertial sets
惯性集
1.
On the paper 1,we obtain the existence of inertial sets for generalized Ginzburg-Landau equation in one dimension.
在文[1]的基础上得到了一维广义Ginzburg-Landau方程的惯性集存在性。
4) inertial manifold
惯性流形
1.
An inertial manifold of the 2D Swift-Hohenberg equation
非局部二维Swift-Hohenberg方程的惯性流形
2.
Under the condition of right spectral gap and the assumption of properly small delay time,the existence of inertial manifolds is proved by Lyapunov-Perron method.
利用Lyapunov-Perron方法在适当的谱间隙条件和适当小的时滞假设下,证明了一类非自伴算子情形下半线性时滞抛物方程惯性流形的存在性。
3.
In this paper, a new proof of the exponential tracking property of the solutions on the inertial manifolds is given, and an improved result is obtained.
在本文中,笔者对关于惯性流形上指数吸引性的一个改进了的结果给出一个新的证明。
5) inertial manifolds
惯性流形
1.
The new multilevel methods stemming from the utilization of inertial manifolds which have been introduced so far include t.
此外,还可以利用惯性流形作为发展问题的物理意义更为密切相关的一种不同类型的多级方法,主要用于非线性耗散方程。
2.
The equations of nonlinear viscouselastic beam are considered, The existence of absorbing set and inertial manifolds for the system are obtained, and from which we get that the P D E.
考虑具有介质阻尼及非线性粘弹性本构关系的梁方程,证明了它的有界吸收集和有限维惯性流形的存在性,并由此得到在一定的条件下所给偏微分方程等价于一常微分方程组的初值问题。
6) inertial collector
惯性集尘器
补充资料:大集经菩萨念佛三昧分
【大集经菩萨念佛三昧分】
(经名)具名大方等大集经菩萨念佛三昧分,十卷,隋达磨笈多译。与菩萨念佛三昧经同本。说念佛三昧之法。
(经名)具名大方等大集经菩萨念佛三昧分,十卷,隋达磨笈多译。与菩萨念佛三昧经同本。说念佛三昧之法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条