1) difference model
差值模型
2) mean-variance model
均值-方差模型
1.
Through embedding the mean-variance model into the quadratic utility model and then adopting dynamic programming,we get an analytical expression for the optimal investment strategy.
以动态均值-方差模型研究基于收益序列相关的投资组合选择。
2.
Based on the operating mechanism of the open fund,a single-period mean-variance model is established for selecting optimal portfolios.
基于开放式基金的运行机制,对其最优投资组合问题建立了单阶段均值-方差模型,在赎回准备金有固定的比例的前提下,就是否存在无风险资产的投资进行了讨论,并推导出相应问题的最优解和有效前沿的表达式,同时还给出了含风险和预期收益的权衡参数ω的模型与一般均值-方差模型等价的充分必要条件。
3.
In this paper description suitable adoption multi-model conduce to who make policy of investment by empirical analysis , mean-variance model, logarithm utility model and actual data of our country stock market.
本文选用均值-方差模型和对数效用模型,并以我国证券市场的实际数据,通过实证分析说明适当选用多模型将有助于投资者进行投资决策。
3) heteroscedastic extreme value model
异方差极值模型
5) ordered mean difference model
序值均差模型
6) Markwitz's mean-variance model
Markwitz均值-方差模型
补充资料:Boole值模型
Boole值模型
Boolean-valued model
B.目e值模型〔致dean一初ued mdel;6yJ砚加3I.a叨翻M。口e月‘] 此模型定义如下:设Q具有单种变元的某个一阶语言的表征,即Q为函数与谓词的符号集.Boole值模型为一三元组M=(B,,踢,O衬,这里B。为非退化肠双e代数(Boolean al罗bra),V、为非空集并且O,为定义在Q上的函数,使得若p为n元函数符号,则 。。(p)。。众若p为n元谓词符号,则 。、(p)二刀冷.符号 Xy表示定义在Y上而取值于X的所有函数的集合,x”=x{‘:’‘”},这里n)o为自然数.Boole代数BM称为模型M的真假值集(set of truth vaines).集合V,称为M的全域(u niverse) .Boole值模型M也称为B模型,若真值集为Boole代数B即BM=B.若Boole代数B为二元代数(即B={o,l}),则此B模型M就是经典两值模型. 令L,为在语言L上添加新个体常元而得:对每个妊呱在L,中具有相应的个体常元v.设M为一B模型且丑=(B;o,l,e,日,自)为完全Boole代数;以下的等式1)一8)定义z、的每个闭表达式e(即_无自由变元的公式或项)的停(v alue)}一川{、· 1)!{v{·、·。这里v任V。- 2)、一p(:,.几),一。,=(0、(P川长,{一、,二,{t。引衬,这甲:l,一,:。为闭项且p为。元函数或谓词符号; 3){{价〕沙,、二一}{训}、口{}妇,。; 4)一中V班}一、=一}甲}{、日,沙娜 5)1势八价{、一川价{IM自川价}币 6)1一}砂、二一毋},、,; 7)·‘日心,(‘乏){{、二(_少:。;,}{切(v)l一、; 8)一丫心甲(衬}。=自。。,、{{价(v)l M. 关系式l)一哟对于某些非完全Boole代数亦可定义值一}?}一娜仅需要7)和8)中的无穷并和无穷交存在.Boole值模型的概念亦可对具多种类型变元的语言弓{人.在这样的情形下每种变元具有自己的变域Fo. 称闭公式甲在B模型中为真的‘true)(M卜初是指{}价州矿二互称B模型M为理论T的模型,是指对于T的所有公理价皆有M卜甲.若h为从Boo卜代数B到Boole代数B’的同态且保持无穷并和无穷交,则存在了模型M‘使对每个LM闭公式毋,!一甲{},二h(川毋:动成立.若模型M的域是可数的,则存在映射到Boole代数{O,1冲的同态h,在其下M被转化成经典两值模型M‘使M卜,一M’片甲.己经证明理论T相容,当且仅当T具有Boolc值模型.这个定理成为Boole值模型理论应用于公理理论相容性的基础. 若理论T的Boole值模型是借助于另一公理理论S而构作的,则可得到T相对于N的相容性.于是P.Cohen的理沦Z卜以2卜>杖,)相对于ZF的相容性的结果由借助于ZF构作Boole值模型而得到(见力迫法(fo川ng meth司)).Cohen力迫关系p{{一甲的构作等价三尹满足 }1叫}、二伊:川卜一叫的Boole值模型的构作
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条